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Kramers-Kronig relations link the real and imaginary part of the Fourier transform of a

well-behaved causal transfer function describing a linear, time-invariant system. From the

physical point of view, according to the Kramers-Kronig relations, absorption and dis-

persion become two sides of the same coin. Due to the simplicity of the assumptions

underlying them, the relations are a cornerstone of physics. The rigorous mathematical

proof was carried out by Titchmarsh in 1937 and just requires the transfer function to be

square-integrable (L2), or equivalently that the impulse response of the system at hand has

a finite energy. Titchmarsh’s proof is definitely not easy, thus leading to crucial steps that

are often overlooked by instructors and, occasionally, prompting some authors to attempt

shaky shortcuts. Here we share a rigorous mathematical proof that relies on the Laplace

formalism and requires a slightly stronger assumption on the transfer function, namely

its being Lebesgue-integrable (L1). While the result is not as general as Titchmarsh’s

proof, its enhanced simplicity makes a deeper knowledge of the mathematical aspects of

the Kramers-Kronig relations more accessible to the audience of physicists.
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I. INTRODUCTION9

Linear and time-invariant (LTI) systems are among the most basic, widespread and studied10

models in physics. Restricting the discussion to one-dimensional functions of time, an LTI system11

is characterized by a transfer function, G(t), whose convolution with an input function provides12

the output function. In the frequency domain, this property assumes an even simpler form: in the13

Fourier or Laplace formalism, the transform of the output is given by the product of the transforms14

of the input and the transfer function.15

As if that were not enough, requiring the transfer function G(t) to be causal and have a finite16

energy, as it is always the case in the real physical world, produces a spectacular result1: the mutual17

dependency of the physical descriptions underlying absorption and dispersion, which describe18

how a system reacts to an input in terms of energy and phase delay, respectively. So the rainbow19

exists because at some wavelengths other than visible ones water is opaque, and vice versa. More20

specifically, the real and imaginary parts of the Fourier transform G̃F(ω) of G(t), or susceptibility21

χ(ω), are the Hilbert transforms of one another. The result was first derived, independently, by R.22

de L. Kronig2 and H. A. Kramers3. However, the eponymous relations got a solid and definitive23

mathematical justification only with the work by E. C. Titchmarsh4, who proved the Kramers-24

Kronig relations to hold if and only if the causal transfer function G(t) is square-integrable; i.e. it25

belongs to L2:26 ∫ ∞

0
|G(t)|2 dt <+∞ . (1)

The Kramers-Kronig relations, sometimes referred to as “dispersion relations”5–8, are a corner-27

stone of physics, whose implications are broadly investigated in a wide range of fields9–12 and thus28

go beyond the prototypical problem of interpreting the refraction index n(ω), for which they were29

first devised2. Although Titchmarsh’s contribution was recognized long ago13, a few decades after30

the formulation and proof of the relations, the awareness among the community of physicists about31

Titchmarsh’s achievement was not unanimous. So Sharnoff in 1964 still argued14: “It is paradox-32

ical that although the Kramers-Kronig relations are so widely used, the literature contains neither33

a convincing proof of their general validity nor a careful discussion of sets of conditions under34

which they might be expected to hold.”35

The likely reason is that the Titchmarsh theorem in Fourier analysis–as the theorem is named—36

is definitely not straightforward to prove. Indeed most textbooks and papers citing it arrive just37

short of a complete proof when they typically take for granted the crucial and most difficult step:38
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how to prove that the Fourier transform G̃F(ω), where the usually real frequency ω is extended to39

the complex plane, is analytic not only on the open, upper half-plane Im(ω)> 0, but also on the40

real axis Im(ω) = 0. So, for example, in J. D. Jackson’s classic book on electrodynamics15 the step41

is justified with the words “On the real axis it is necessary to invoke the ‘physically reasonable’42

requirement that G(τ)→ 0 as τ → ∞ to assure that ε(ω)/ε0 is also analytic there.”∗ A similar43

argument is used by Bechhoefer16 who, in order to provide “a brief derivation of the Kramers-44

Kronig relations”, states: “for simplicity, we will also assume that G(ω) has no poles on the real45

axis”. Finally, the likewise classic book by Landau and Lifshitz on Statistical Physics17 proposes46

a proof that is based on a previous theorem, proved by N. N. Meı̆man, which derives asymptotic47

properties of χ(ω) as a consequence of Cauchy’s argument principle18. However, exactly as in48

the previous cases, also this theorem implicitely takes for granted the analyticity of χ(ω) on the49

real axis Im(ω) = 0.50

The arduousness of the proof, combined with the importance of the result, has prompted several51

attempts to find simpler approaches. Searching the internet is likely to provide alleged solutions52

from non-peer-reviewed sources and, occasionally, peer-reviewed ones19, which invariably fail to53

live up to the promises. A common trait of these attempts is their being based on the combination54

of two ingredients: the convolution theorem, and the Fourier transform of the Heaviside step func-55

tion θ(t), in fact the very expression of causality. The convolution theorem states that the Fourier56

transform of the convolution of two functions or distributions of time is equal to the product of the57

Fourier transforms of the factors. Due to the symmetry of the Fourier transform and its inverse, the58

theorem can be read the other way round, i.e. the inverse Fourier transform of the convolution of59

two functions or distributions of frequency is equal to the product of the inverse Fourier transforms60

of the factors multiplied by 2π. With regard to the Fourier transform of the Heaviside step func-61

tion θ(t), χ(ω) is given by the sum of the two distributions πδ (ω) and iPω−1, where P indicates62

the Cauchy principal value. Consequently, starting from the expression G(t) = θ(t)G(t), which is63

true because of causality, and applying the “inverse” version of the convolution theorem one can64

derive the expression65

χ(ω)⋆P
1

ω
=−iπχ(ω) , (2)

which corresponds to the Kramers-Kronig relations being written as a convolution.66

∗ In Jackson’s book, ε(ω)/ε0 − 1 corresponds to the Fourier transform of G(τ). The requirement G(τ)→ 0 as

τ → ∞ is physically reasonable because dissipative mechanisms loom everywhere, so the impulse response of any

real system must fade out some time. While this behavior translates, as a consequence of Parseval’s theorem, in

G̃F(ω) being vanishing too as |ω | → ∞, how this implies the analyticity on the real axis is less immediate.
3
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This result is well known (see, for example, Sec. 1.8 of Ref. 1), but it definitely not easy to67

derive, the most difficult part being the conditions under which the convolution theorem holds.68

In fact, the derivation of the expression above requires the theory of distributions, and it is far69

from being more elementary than Titchmarsh’s one. On the other hand, the alleged solutions70

mentioned above go straight to the final expression, disregarding essential aspects of validity,71

which essentially coincide with those set by the Titchmarsh theorem and whose omission leads72

to miscalculations. For example, referring to the attempt by Hu, described in the 1989 paper73

“Kramers-Kronig (relations) in two lines”19, one could try to verify whether the relations work74

when the function Ŷ (t) is given by a constant value, or by the sign function sgn(t) = 2 ·θ(t)−1.75

They do not, as a direct evaluation promptly shows. To conclude, the Kramers-Kronig relations76

are a powerful tool that stems from linearity, causality, and energy boundedness: proving the link77

is arduous and admits no shortcuts.78

Here we show that the Kramers-Kronig relations can alternatively be derived in a way that is79

simpler than Titchmarsh’s one. The derivation relies on the intrinsically causal Laplace formal-80

ism and on the assumption that the transfer function is Lebesgue-integrable rather than square-81

integrable, i.e. belonging to L1 (rather than L2):82

∫ ∞

0
|G(t)| dt <+∞ . (3)

However, simplicity comes at a cost: as it will be shown later, G(t) ∈ L1 provides a sufficient83

condition for the Kramers-Kronig relations to hold, rather than a necessary and sufficient one as84

in Titchmarsh’s formulation. Therefore, though providing a solid path to the Kramers-Kronig85

relations, the present proof does not replace Titchmarsh’s one, which remains unsurpassed.86

In the following, after a brief review of the Laplace and Fourier transforms and the related prop-87

erties that are functional to the proof, we introduce Laplace-transformable, Lebesgue-integrable88

functions, for which the Kramers-Kronig relations are thereupon proved. The limit of the present89

proof compared with Titchmarsh’s classic one is finally discussed.90

II. A REVIEW OF LAPLACE AND FOURIER TRANSFORMS91

To aid the reader, and despite their being common knowledge, we summarize here the definition92

and some properties of the Laplace transform that are important for the discussion below: analyt-93

icity, Riemann-Lebesgue lemma, and the inversion of the transform via Bromwich, or Fourier-94
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Mellin, integral. For the same purpose, at the end of the section we also review the definition of95

the Fourier transform and when a function is Fourier-transformable.96

Let s be a complex variable and s′, s′′ its real and imaginary part, respectively. By definition,97

a function f (t) is causal if, for all t < 0, f (t) = 0, and is locally integrable if the integration on98

any compact subset† of its domain is finite. The Laplace transform F̃L(s) of a causal and locally99

integrable f (t) is defined as100

F̃L(s)≡
∫ ∞

0
e−st f (t) dt . (4)

The complex half-plane where the above integral absolutely converges (á la Lebesgue), i.e. the set101

of complex numbers s such that102

∫ ∞

0

∣∣e−st f (t)
∣∣ dt =

∫ ∞

0
e−s′t | f (t)| dt < ∞ , (5)

is left-bounded by the so-called abscissa of absolute convergence λ0: λ0 is the minimum real103

number such that absolute convergence occurs for any s′ > λ0. A function f (t) that is causal,104

locally integrable, and has a finite λ0 is henceforth referred to as a Laplace-transformable function.105

The main consequence of the absolute convergence condition is the analyticity of the Laplace106

transform F̃L(s) in the half-plane of absolute convergence, i.e. for s′ > λ0. Another consequence is107

the Riemann–Lebesgue lemma, which follows from Lebesgue’s dominated convergence theorem:108

lim
s′→+∞

F̃L(s) = 0 . (6)

Finally it is worth stating the general expression for the inverse Laplace transform, which cor-109

responds to the Bromwich, or Fourier-Mellin, integral:110

f (t) =
1

2πi

∫ a+i∞

a−i∞
F̃L(s)e

st ds , (7)

where a is any constant real number such that a > λ0.111

The Fourier transform of a function f (t), not necessarily causal, is112

F̃F(ω)≡
∫ ∞

−∞
eiωt f (t) dt , (8)

where ω is a real frequency. Here “the physicists’s notation” for the phasors of positive frequency,113

namely e−iωt , is used.‡ Engineers typically use e jωt instead. The two notations are completely114

† For a function of a real variable, compact is equivalent to closed and bounded.

‡ The expression above carries out a “projection” of the original function f (t) onto the phasor corresponding to the

frequency ω . In quantum mechanics, the projection of a wave-function onto another wave-function is a scalar

product that requires the complex conjugation of the latter. This is the reason why, within the Fourier integral, the

complex conjugate of the phasor appears.
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equivalent, due to the invariance of the real world under complex conjugation and the freedom we115

have in choosing the “reference” root of x2 =−1: there are indeed two, i and −i, or, better, i and116

j =−i. As a result, one can recover the engineers’ notation by replacing here and henceforth i117

with − j and, in particular, setting s = jω .118

It is now worth mentioning that a common mistake consists of assuming square-integrability119

( f (t) ∈ L2). Indeed, f (t) is Fourier-transformable if it is Lebesgue-integrable ( f (t) ∈ L1), i.e. if it120

satisfies Eq. (3) (with f instead of G). Remarkably, f (t) ∈ L2 does not necessarily imply f (t) ∈ L1,121

and thus the Fourier-transformability of f (t). An example is provided by f (t) = θ(t −1)/t, which122

belongs to L2 though not to L1. Conversely, f (t) ∈ L1 does not imply f (t) ∈ L2 either: the function123

f (t) = θ(t)θ(1− t)/
√

t provides a counterexample. On the other hand, it is well known that, in124

the case of square-integrability, Parseval’s theorem holds and the inverse Fourier transform is125

essentially the same operator as the direct Fourier transform. The conundrum of a function f (t)126

that belongs to L2 but not to L1 can be overcome by redefining the Fourier transform as follows20.127

One can consider the sequence of functions128

fn(t) = f (t) [θ(t +n)−θ(t −n)] , (9)

where n is a positive integer number. Each function fn(t), which can be shown to belong simultane-129

ously to L1 and L2, tends to f (t) as n → ∞ with respect to the L2-norm given by ‖ f‖= ∫
R
| f (t)|2 dt.130

Defining the Fourier transform of F̃F(ω) of f (t) as the limit of the sequence of Fourier transforms131

F̃F,n(ω) when n → ∞ eventually settles the problem.132

III. LAPLACE-TRANSFORMABLE, LEBESGUE-INTEGRABLE FUNCTIONS133

In the following discussion, besides being Laplace-transformable, the function f (t) is assumed134

to be Lebesgue-integrable, i.e. to belong to L1 and thus to satisfy135

∫ ∞

0
| f (t)| dt < ∞ . (10)

Comparing this last equation with Eq. (5) requires the abscissa of absolute convergence λ0 to be136

negative, so F̃L(s) is analytic on the closed right-half plane (RHP), namely the set of s such that137

s′ > 0.138

Due to λ0 < 0, one can set a = 0 in Eq. (7), so the integration occurs on the imaginary axis.139

The substitution s =−iω , where ω is a real variable, yields140

f (t) =
1

2π

∫ ∞

−∞
F̃L(−iω)e−iωt dω . (11)
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Upon noting that f (t) ∈ L1 is the basic condition for the Fourier-transformability of f (t), it is141

straightforward to recognize that F̃L(−iω) is equal to the Fourier transform F̃F(ω) of f (t):142

F̃F(ω) = F̃L(−iω) . (12)

The inverse is true as well: f (t) being causal and Fourier–transformable implies its Fourier trans-143

form F̃F(ω) to correspond to the Laplace transform F̃L(s), with s′ = 0, s′′ =−iω , and to this144

Laplace transform having λ0 < 0.145

IV. KRAMERS-KRONIG RELATIONS146

We now suppose that, besides being causal, the transfer function G(t) of an LTI system is147

Lebesgue-integrable. Upon setting a complex number s0 =−iω lying on the imaginary axis, we148

then consider the following function149

H(s,ω)≡ G̃L(s)

s− s0
=

G̃L(s)

s+ iω
. (13)

Due to G̃L(s) being analytic on the closed RHP, H(s,ω) is analytic on the closed RHP except at150

the point s = s0 =−iω . By virtue of Cauchy residue theorem, an integration along the closed path151

shown in Fig. 1 yields a vanishing result because no poles lie within the path:152

∫ −iω−iε

−iR
H(s,ω) ds+

∫

γ(ε)
H(s,ω) ds+

∫ iR

−iω+iε
H(s,ω) ds+

∫

Γ(R)
H(s,ω) ds = 0 , (14)

where the Γ(R), γ(ε) are two semicircular paths of radii R and ε , respectively, that are connected153

by the two linear segments joining the points on the imaginary axis of ordinates −iR, −iω − iε ,154

and −iω + iε , iR.155

Once ε → 0+ and R → ∞, the sum of the integrals along the linear segments can be expressed156

as the Cauchy principal value of a single integral:157

lim
ε→0+

R→∞

(∫ −iω−iε

−iR
H(s,ω) ds+

∫ iR

−iω+iε
H(s,ω) ds

)
= P

∫ +i∞

−i∞
H(s,ω) ds = P

∫ +i∞

−i∞

G̃L(s)

s+ iω
ds .

(15)

The integral on γ(ε), which runs counterclockwise, is equal to iπG̃L(−iω).158

Now comes the crucial part of the theorem, namely to show that the integral along Γ(R) van-159

ishes as R → ∞. Upon writing s in polar coordinates as s = Reiθ , the integral can be written as160

lim
R→∞

∫

Γ(R)
H(s,ω) ds = lim

R→∞

∫ −π/2

π/2

G̃L

(
Reiθ

)

Reiθ + iω
iReiθ dθ = lim

R→∞

∫ −π/2

π/2
i
s G̃L(s)

s+ iω
dθ . (16)
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s
′′

s
′

γ(ε)
s0 =−iω

Γ(R)

FIG. 1. Integration path for the derivation of the Kramers–Kronig relations from G̃L(s)/(s−s0). The closed

path is formed by two semicircular paths Γ(R) and γ(ε) of radii R and ε , respectively, connected by two

segments belonging to the imaginary axis. The path excludes the pole in −iω .

For any θ within the interval (−π/2, π/2) the limit R → ∞ implies s′ →+∞, so G̃L(s) tends to161

zero as a consequence of the Riemann–Lebesgue lemma expressed in Eq. (6). Therefore, because162

given a real number ℓ > 1, one has |s/(s+ iω)|6 ℓ as soon as R > ℓ|ω|/(ℓ−1), the whole integral163

vanishes as well.§164

The argument used here is similar to Jordan’s lemma, which states that if the maximum value165

of G̃L(s) satisfies the Riemann–Lebesgue lemma, then, for t < 0, one has166

lim
R→∞

∫

Γ(R)
G̃L(s)est ds = 0 . (17)

The main difference between Jordan’s lemma and the present argument is therefore the factor167

est , which is here replaced with 1/(s+ iω). In addition, while in Jordan’s lemma the sign of168

the parameter t plays a crucial role to achieve the convergence to zero of the integral, here the169

parameter ω plays no role.170

Setting s =−iν , ν ∈ R, and remembering the relation between Laplace and Fourier transform171

expressed by Eq. (12) above, the path integral of Eq. (14) can then be rewritten as172

G̃F(ω) =
1

iπ
P

∫ ∞

−∞

G̃F(ν)

ν −ω
dν . (18)

§ By writing s = Reiθ , one has
∣∣∣∣

s

s+ iω

∣∣∣∣6 ℓ⇔ ω2

R2
+ 2

ω

R
sin(θ )+ 1 >

1

ℓ2
.

Because, for any real number a, asin(θ )>−|a|, it holds

ω2

R2
− 2

|ω |
R

+ 1 >
1

ℓ2
⇔ |ω |

R
6 1− 1

ℓ
.
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Separating the real and imaginary part of the Fourier transform by writing G̃F(ω) = G̃′
F(ω)+ iG̃′′

F(ω)173

yields174

G̃′
F(ω) =

1

π
P

∫ ∞

−∞

G̃′′
F(ν)

ν −ω
dν ,

G̃′′
F(ω) =− 1

π
P

∫ ∞

−∞

G̃′
F(ν)

ν −ω
dν ,

(19)

that corresponds to the well known Kramers–Kronig relations13, i.e. to G̃′
F(ω), G̃′′

F(ω) being the175

Hilbert transforms of one another.176

V. DISCUSSION177

We mentioned above that the Kramers-Kronig relations were proven by Titchmarsh to be valid178

for any L2, causal function G(t). One might argue that the present proof of the Kramers-Kronig179

relations, in which the L2 assumption is replaced with the L1 assumption (see diagram below in180

Fig. 2), is, due to its enhanced simplicity, superior to Titchmarsh’s approach. Indeed, there are two181

reasons why the Titchmarsh theorem still makes up the unsurpassed way to achieve the Kramers-182

Kronig relations.183

The impulse response G(t) is causal and. . .

. . . G(t) ∈ L2 . . . G(t) ∈ L1

~www�

wwww�

G̃F(ω) ∈ L2 G̃L(s) is analytic on the closed RHP

setting G̃F(ω) = G̃L(s =−iω), . . .w�m
G̃′

F(ω), G̃′′
F(ω) are Hilbert transforms of each other.

Titchmarsh theorem present proof

FIG. 2. Diagram of the Titchmarsh’s proof (left) and the present one (right).

First, any function G̃L(s) that is analytic on the closed RHP does not necessarily correspond to184

a causal, L1 transfer function: as a major counterexample, a constant G̃L(s) cannot be the Laplace185

transform of any regular function because it would violate the Riemann–Lebesgue lemma (a con-186

stant G̃L(s) is, indeed, the Laplace transform of a distribution, namely a Dirac delta in the origin).187

For this reason, our approach to the Kramers-Kronig relations is one-way only. Conversely, the188

Titchmarsh theorem can be read also backwards: a function G̃F(ω) belonging to L2 and whose real189
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and imaginary parts are Hilbert transforms of one another does correspond to a causal, L2 transfer190

function G(t) = F−1
[
G̃F(ω)

]
. Second, proving the Kramers-Kronig relations for L2 functions191

makes the use of the theorem more handy, and this is what matters in physical applications.192

However, as mentioned above, our approach provides an easier proof in all the cases in which193

the causal transfer function belongs to L1 ∩L2.194
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s
′′

s
′

γ(ε)
s0 =−iω

Γ(R)
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The impulse response G(t) is causal and. . .

. . . G(t) ∈ L2 . . . G(t) ∈ L1

~www�

wwww�

G̃F(ω) ∈ L2 G̃L(s) is analytic on the closed RHP

setting G̃F(ω) = G̃L(s =−iω), . . .w�m

G̃′
F(ω), G̃′′

F(ω) are Hilbert transforms of each other.

Titchmarsh theorem present proof
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