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Detection of chaos in experimental data is a crucial issue in nonlinear science. Historically,
one of the first evidences of a chaotic behavior in experimental recordings came from laser
physics. In a recent work, a Minimal Universal Model of chaos was developed by revisiting
the model of laser with feedback, and a first electronic implementation was discussed. Here,
we propose an upgraded electronic implementation of the Minimal Universal Model, which
allows for a precise and reproducible analysis of the model’s parameters space. As a marker
of a possible chaotic behavior the variability of the spiking activity that characterizes one of
the system’s coordinates was used. Relying on a numerical characterization of the relationship
between spiking activity and maximum Lyapunov exponent at different parameter combinations,
several potentially chaotic settings were selected. The analysis via divergence exponent method
of experimental time series acquired by using those settings confirmed a robust chaotic behavior
and provided values of the maximum Lyapunov exponent that are in very good agreement
with the theoretical predictions. The results of this work further uphold the reliability of the
Minimal Universal Model. In addition, the upgraded electronic implementation provides an
easily controllable setup that allows for further developments aiming at coupling multiple chaotic
systems and investigating synchronization processes.
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1. Introduction

In a very recent work by Meucci et al. [2021],
the model of a laser with feedback was revisited
by focusing on the minimal nonlinearity neces-
sary to lead to chaos. The model has its origin
in laser physics, specifically single-mode CO2 lasers
[Arecchi et al., 1986, 1987], but it can be general-
ized to describe various physical phenomena, such
as neuron dynamics [Guevara et al., 1983; Shas-
tri et al., 2015; Jordi Tiana-Alsina & Masoller,
2019], electronics, opto-electronics and possibly
population dynamics [Volterra, 1926, 1931; Lotka,
1910, 1920] and epidemiological models [Schwartz &
Smith, 1983]. Therefore, the model makes up a Min-
imal Universal Model for chaos.

The Minimal Universal Model, henceforth
referred to as μModel, is a three-dimensional model:
borrowing from laser terminology, the fastest vari-
able x corresponds to laser intensity, the slowest
variable y to population inversion and the interme-
diate variable z to feedback strength, which acts on
an intermediate time scale between x and y. The
behavior of the system depends on two main param-
eters, namely the pump p0 and the bias B0. In their
work, Meucci et al. [2021] provided a thorough ana-
lytical study of the system and showed the results
of numerical simulations in terms of bifurcation dia-
grams and phase portraits at a fixed value of p0 and
by changing B0.

The same work also discusses an experimental
implementation in which phase portraits acquired
at different operational conditions are described.
The evidence of chaos, while convincing due to the
similarity with the numerical simulations, was pro-
vided at a qualitative level.

Here we discuss a more advanced version of the
circuit implementing the μModel, which is similar
to the pristine version described by Meucci et al.
[2021]. As a major experimental improvement, the
crucial parameters p0 and B0 are set via digital
trimmers that allow for a precise and reproducible
operation. By exploiting the possibility of remotely
controlling the two parameters, the function of the
circuit was investigated on a set of 7000 different
conditions. In addition, we simulated the system via
numerical integration in order to highlight the set-
tings in the parameter space that lead to a chaotic
behavior.

By applying a statistical analysis of the inter-
spike-intervals (ISIs) we singled out parameter set-
tings that are expected to provide chaos. It is

worth mentioning that in many fields ISIs are a
important statistic to interpret nonlinear phenom-
ena [Rieke et al., 1997; Richardson et al., 1998;
Segundo, 2003; Ricci et al., 2019; Perinelli et al.,
2020]. Signals generated by the circuit under the
conditions corresponding to these parameter set-
tings were further analyzed by using the divergence
rate method [Gao & Zheng, 1993; Rosenstein et al.,
1993; Kantz, 1994; Kantz et al., 2013]. Besides pro-
viding a clear evidence of chaos, this analysis pro-
vides values of the maximum Lyapunov exponent
that are in very good agreement with the theoreti-
cally and numerically predicted ones.

The present work shows the versatility of
the μModel and its experimental implementation:
μModel is applicable to a wide range of chaotic phe-
nomena, ranging from lasers to neurons. It is also
an ideal candidate to investigate, both from a theo-
retical and an experimental point of view, synchro-
nization phenomena.

The paper is organized as follows. In Sec. 2,
the mathematical aspects of the μModel are sum-
marized. In Sec. 3, we show how to directly design
the circuit starting from the very basic equations
that describe μModel. Section 4 is devoted to the
numerical simulations and to the features that are
later used to identify a chaotic behavior. The inter-
pretation of the experimental data and the evidence
of chaos are the topic of Sec. 5. Final remarks are
presented in Sec. 6.

2. Minimal Universal Model and
Circuital Implementation

The dimensionless system of differential equations
that define the μModel is:

dx

dτ
= −ε1x(1 + k1z

2 − p0y), (1a)

dy

dτ
= −y − xy + 1, (1b)

dz

dτ
= −ε2(z − B0 + B1x). (1c)

Aiming at an electronic implementation of the
system, it is necessary to convert the dimensionless
time scale τ in a real time t, and the dimensionless
quantities x, y, z appearing in Eqs. (1) in voltages
X, Y , Z, respectively.

Starting from time, we set the time constant τy

that corresponds to the reciprocal of the decay rate
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of the population inversion γ used by Meucci et al.
[2021]. Consequently:

t = τy · τ.
It follows:

dx

dt
= −ε1

τy
x(1 + k1z

2 − p0y),

dy

dt
= − 1

τy
(y + xy − 1),

dz

dt
= −ε2

τy
(z − B0 + B1x).

We now define

τx ≡ τy

ε1
, τz ≡ τy

ε2
,

so that the system of equations becomes:

dx

dt
= − 1

τx
(x + k1xz2 − p0xy),

dy

dt
= − 1

τy
(y + xy − 1),

dz

dt
= − 1

τz
(z − B0 + B1x).

In order to linearly map the dimensionless
quantities x, y, z into voltages X, Y , Z, a voltage
scale is required. Because an electronic implemen-
tation of the differential equations requires analog
multiplier integrated circuits, the simplest choice
for a voltage scale is provided by the “normaliza-
tion voltage” V0 used by the analog multipliers (see
below), so that:

X = V0 · x, Y = V0 · y, Z = V0 · z.

It follows:

dX

dt
= − 1

τx

(
X + k1

XZ2

V 2
0

− p0
XY

V0

)
, (2a)

dY

dt
= − 1

τy

(
Y +

XY

V0
− V0

)
, (2b)

dZ

dt
= − 1

τz
(Z − B0V0 + B1X). (2c)

The three equations can be electronically emu-
lated by using three inverting, low-pass filters,
where the respective time constants τx, τy, τz are
set by using suitable RC networks. The inputs to

the three filters are the quantities contained in the
brackets of the right-hand terms of the previous
equations.

The two factors k1, B1, which appear in
Eqs. (2a) and (2c), respectively, are implementable
via resistor ratios. The control parameter B0, hence-
forth referred to as “bias” (see [Meucci et al.,
2021]), now corresponds to a voltage B0V0 that can
be straightforwardly provided by using a voltage
divider connected with the power supply voltage.
Finally, the pump parameter p0 is also imple-
mentable via a resistor ratio. However, this last
feature is not desirable from the point of view of
an electronic implementation: because p0 has to
be changed, this solution would require a trim-
mer on the input network of the low-pass filter
with output X. A more desirable voltage-controlled
implementation is achievable as follows. Let

Y ′ ≡ p0 · Y.

Replacing Y with Y ′ in the system of Eqs. (2)
leads to

dX

dt
= − 1

τx

(
X + k1

XZ2

V 2
0

− XY ′

V0

)
, (3a)

dY ′

dt
= − 1

τy

(
Y ′ +

XY ′

V0
− p0V0

)
, (3b)

dZ

dt
= − 1

τz
(Z − B0V0 + B1X). (3c)

In this way, the pump p0 enters the equations —
more precisely, the second one — as a constant volt-
age p0V0. By setting:

τx = R1C1 τy = R4C2 τz = R7C3,

ε1 =
τy

τx
=

R4C2

R1C1
ε2 =

τy

τz
=

R4C2

R7C3
,

k1 =
R1

R2
B1 =

R7

R9
,

the previous system becomes

dX

dt
= − 1

R1C1

(
X +

R1

R2

XZ2

V 2
0

− XY ′

V0

)
, (4a)

dY ′

dt
= − 1

R4C2

(
Y ′ +

XY ′

V0
− p0V0

)
, (4b)

dZ

dt
= − 1

R7C3

(
Z − B0V0 +

R7

R8
X

)
. (4c)
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Fig. 1. Schematic of the circuit implementing the μModel. The part containing the three multipliers and the four annex
operational amplifiers implements the μModel. The remaining two buffers on the lower left part of the schematic provide
the voltages corresponding to the control parameters pump p0 and bias B0. The two parameters are varied by acting on the
respective digital trimmers RpT , RBT , which are remotely controlled via a board hosting an FPGA and an ARM connected
to a workstation via a local network.

The circuit shown in Fig. 1 implements this last
system of differential equations. Three operational
amplifiers (op-amps; OP07) are used as adders and
integrators to produce the three system voltages
X, Y , Z. An additional op-amp implements an
inverter. Three analog multipliers (AD633JN) are
then used to produce the products XY ′/V0, Z2/V0,
XZ2/V 2

0. For these components the nominal nor-
malization voltage V0 is equal to 10 V.

In compliance with the line of action outlined
in the work by Meucci et al. [2021], we set the fixed
parameters ε1, ε2, k1, B1 and the three time con-
stants τx, τy, τz that appear in Eqs. (3) as reported
in Table 1.

A related choice of the discrete capacitive and
resistive components that correspond to the param-
eter settings of Table 1 and to other straightforward
circuital constraints — for example, R3 has to be
equal to R1, and R5 to R4 — is reported in Table 2.

Table 1. Fixed parameters entering the system
of Eqs. (3).

Parameter Value Parameter Value

ε1 200 τx 49.5 μs
ε2 10 τy 10 ms
k1 33 τz 1ms
B1 0.25

2150205-4
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Table 2. Nominal values of discrete components to yield the
parameter settings of Table 1.

Component Value Component Value Component Value

C1 1.5 nF C2 1 μF C3 100 nF

R1 33 kΩ R4 10 kΩ R7 10 kΩ
R2 1 kΩ R5 10 kΩ R8 40 kΩ
R3 33 kΩ R6 2 kΩ R9 10 kΩ

Table 3. Nominal values of discrete components that
are used to set the control parameters p0 and B0.

Component Value Component Value

RpA 20 kΩ RBA 24 kΩ
RpT 10 kΩ RBT 10 kΩ
RpB 130 kΩ RBB 510 kΩ

As far as the two control parameters p0 and B0

are concerned, their values are set by the trimmers
RpT , RBT , respectively, that belong to the voltage
dividers in the lower left part of Fig. 1. Let χp, χB be
the fractions, both between 0 and 1, of the trimmer
resistances RpT , RBT , respectively. One has:

−p0V0
R6

R4
= − RpA + χpRpT

RpA + RpT + RpB
Vcc,

−B0V0
R9

R7
= − RBA + χBRBT

RBA + RBT + RBB
Vcc,

where Vcc = 16 V and all the resistances appearing
in the last two expressions are visualized in Fig. 1.

By setting the voltage divider resistances as in
Table 3, it follows that

p0
∼= 1.0 + 0.5 · χp, B0

∼= 0.07 + 0.03 · χB . (5)

The two potentiometers RpT , RBT correspond
to digitally controlled trimmers (X9C103P). Each
trimmer is made up of an array of 99 resistors so
that both fractions χp, χB can take on any value
given by n/99, with n = 0, . . . , 99. The voltage at
each trimmer’s wiper is buffered via an op-amp
(OP07) and fed to the chaotic circuit.

Finally, it is worth remarking that four resis-
tors in Fig. 1 are unlabeled and directly expressed in
terms of their nominal values. Two of these resistors
make up the resistive network to yield a unit-gain
inverting amplifier that provides the correct sign for
the term −XY ′ in Eq. (3a). The other two resistors,
namely a fixed resistor of 1MΩ and a 1 kΩ trimmer
set to ≈ 210Ω, allow to generate a relatively small,
and noncritical, offset (∼ 3 mV) at the noninvert-
ing input of the operational amplifier yielding X.
The offset compensates for the spurious bias volt-
ages generated by the different electronic compo-
nents, which force the X voltage to a stable, neg-
ative value. This last condition hampers a correct
function of the circuit, which requires X > 0.

The whole circuit is mounted on a custom
printed circuit board (PCB), as shown in Fig. 2.
The circuit is powered by ±16 V power-supply.

Fig. 2. (Left) PCB hosting the chaotic circuit and the part that relies on the two digital trimmers and delivers voltages
proportional to the two control parameters p0, B0. The PCB is connected to a power supply and an oscilloscope, both not
shown. (Right) Board hosting the FPGA and ARM processors. The board is connected to a second power supply and to a
workstation, both not shown. The PCB and the board are connected via a flat cable.
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2.1. Remote control and acquisition

The tuning of the parameters p0, B0 occurs by act-
ing on the two fractions χp, χB as follows. The
control of each trimmer occurs via LVTTL signals
provided by a digital controller implemented on
an Avnet Zedboard hosting a Xilinx Zynq-7000
SoC. This device embeds a Field Programmable
Gate Array (FPGA) and an ARM processor that
runs ArchLinux. A C program running on the
ARM processor provides the control interface. The
board communicates with a workstation via a local
network.

The sampling and acquisition of the signals gen-
erated by the system is carried out by a digital oscil-
loscope Keysight MSO-X 2004A. The instrument is
connected via a USB cable for fast data transmis-
sion to the same workstation used to control the
digital trimmers.

3. Experimental Measurements

According to Eqs. (5), p0 and B0 can be varied in
the ranges 1.00 ≤ p0 ≤ 1.50, 0.07 ≤ B0 ≤ 0.10.
However, we found that no oscillation could be
observed for p0 < 1.15, i.e. for the lower 30% of
the related range. The data acquisition was then
set as follows.

The digital trimmer corresponding to p0 was
varied over 70 out of the 100 possible positions,
more precisely in the range 30

99 ≤ χp ≤ 99
99 with step

1
99 . Consequently, p0 varies from 1.152 to 1.500 with
step 0.010. For each value of p0, the digital trimmer
corresponding to B0 was varied over all the available
100 positions, and thus in the range 0

99 ≤ χB ≤ 99
99

with step 1
99 . These settings result in 7000 different

pairs of (p0, B0). For each pair, a set of ten sampled
signals of duration of 1 s each were acquired with a
sampling frequency of 62.5 kHz, a voltage full-scale
of 13.4 V, and a voltage sensitivity of 4mV.

In the post-processing phase, given a pair
(p0, B0) and for each one of the related ten sam-
pled signals, the AC component’s root-mean-square
voltage (AC rms) corresponding to the voltage stan-
dard deviation was computed. This quantity allows
for distinguishing stationary points from oscillatory
and possibly chaotic behaviors. The map displayed
in Fig. 3 shows, for each pair (p0, B0), the AC rms
σX averaged on the related tenfold set.

A map of the kind shown in Fig. 3 cannot dis-
tinguish between periodic and chaotic oscillations.
To identify a possibly chaotic behavior, one could

Fig. 3. Map of the averaged AC rms σX expressed in V
(color scale) for each one of the 7000 pairs of p0, B0. For
each pair, the average is computed on the related set of ten
sampled signals. The white “×” and “+” markers highlight
the two pairs whose phase space and time evolutions are dis-
played in Fig. 4.

analyze at least one sampled signal for each one of
the 7000 pairs (p0, B0) in order to estimate the max-
imum Lyapunov exponent (MLE) or the correlation
dimension [Grassberger & Procaccia, 1983; Perinelli
& Ricci, 2018; Perinelli & Ricci, 2020]. However,
this approach, besides being definitely demanding
from a computational point of view, is not ideal to
highlight the physical behavior of the system in the
different conditions. For these reasons, we use here
a two-step approach: prior to the assessment of the
MLE, which makes up the final step, we implement
an intermediate one consisting of identifying a lim-
ited set of pairs that possibly lead to the generation
of chaotic signals.

The identification relies on the comparison of
the experimental results and the predictions of
numerical simulations in terms of a regularity mea-
sure: by exploiting the spiking activity that char-
acterizes the variable x and thus the voltage X of
the μModel, we assess the variability of inter-spike-
intervals (ISIs). Figure 4 shows two different condi-
tions: in the first one, the phase portrait of the two
variables X and Z is a closed orbit, which corre-
sponds to a periodic behavior: the plot of the volt-
age X versus time shows spikes that occur at a fixed
repetition time, and the inter-spike-interval (ISI)
does not change. In the second condition, the X–Z
phase portrait hints at a possibly chaotic behavior.
In this case, the ISIs are not fixed. The standard
deviation of the ISIs in the spiking activity of the
X voltage therefore makes up a possible indicator
of a chaotic dynamics. From the operational point
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(a) (b)

(c) (d)

Fig. 4. (a) X–Z phase portrait corresponding to a periodic behavior that was achieved by setting p0 = 1.354, B0 = 0.082; the
pair is highlighted in Fig. 3 by the × marker. (b) Graph of the X voltage versus time corresponding to the phase portrait in (a).
(c) X–Z phase portrait corresponding to a possibly chaotic behavior that was achieved by setting p0 = 1.374, B0 = 0.084;
the pair is highlighted in Fig. 3 by the + marker. The central part of the orbit is characterized by a twine-ball-like structure.
(d) Graph of the XS voltage versus time corresponding to the phase portrait in (c).

of view, given a sampled signal, spikes are identi-
fied by the crossing, on the rising-edge, of a thresh-
old corresponding to 75% of the maximum voltage
recorded within that sampled signal.

The next section is devoted to numerical sim-
ulations of the μModel and to the relationship
between ISI variability and MLE, which makes up
the most reliable marker of chaos.

4. Numerical Simulations

In order to interpret the experimental results
described in the previous section, numerical sim-
ulations of the chaotic system described by the sys-
tem of Eqs. (1) with the fixed parameters set as in
Table 1 were carried out. With regard to the two
control parameters p0, B0, the same ranges as in
the experimental investigations were used.

The integration of differential equations was
carried out via a Runge–Kutta Prince–Dormand
(8,9) algorithm by randomly setting the starting
point. The sampling time was fixed to 10−3, which,
due to the time constant τy being equal to 10ms,
corresponds to an “experimental” sampling time
of 10μs.

Again, for each pair (p0, B0), a set of 10 time
series was simulated, each made of 5·105 points and
thus corresponding to “experimental” time inter-
val of 5 s. The map displayed in Fig. 5 shows, for
each pair (p0, B0), the AC rms σx averaged on the
related tenfold set. To allow for a comparison with
the experimental results shown in Fig. 3, the σx val-
ues are multiplied times V0 = 10 V.

A correspondence of the region in which the
simulated time series show an oscillation and the
region of Fig. 3 in which the AC rms is larger
than 0.1 V (i.e. the darker region) is evident. How-
ever, the region where the experimental circuit oscil-
lates is definitely larger than the corresponding
numerically assessed one. While the deviation of the
operational characteristics of the real elements and
devices from the ideal and nominal ones is possibly
a source of the observed different behavior, a major
reason is the sensitivity of the X voltage to noise,
as discussed in Sec. 6.

Parallel to the integration of the differen-
tial equations, we also numerically estimated the
spectrum of Lyapunov exponents by implement-
ing the so-called standard method [Benettin et al.,
1980a, 1980b; Skokos, 2010] according to the

2150205-7

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

1.
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 8
7.

5.
11

0.
66

 o
n 

09
/2

6/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



September 18, 2021 8:30 WSPC/S0218-1274 2150205

L. Ricci et al.

Fig. 5. Map of the averaged AC rms σx multiplied times
V0 and thus expressed in V (color scale) for each one of the
7000 pairs of p0, B0, in the case of the numerically generated
time series. For each pair, the average is computed on the
related set of ten simulations. The blank region corresponds
to fixed points — reached after a transient time — for which
σx = 0. The black contour corresponds to the boundary of
the region where the experimental AC rms is larger than 0.1 V
(see Fig. 3).

procedure described in [Franchi & Ricci, 2014]. The
spectrum consists of three values, of which only one,
namely the MLE, turns out to be positive for a sub-
set of the (p0, B0) pairs. Figure 6 shows, only for
those values that are positive, the MLE averaged on
the related tenfold set. Again, to allow for a com-
parison with experimental results, the dimension-
less MLE value provided by the standard method is
divided by τy = 10 ms. Results are then expressed
in s−1.

Henceforth, we refer to a pair (p0, B0) that pro-
duces a numerically assessed MLE > 0 as a “chaotic
pair”. The set of chaotic pairs essentially coincides
with the set of pairs for which the AC rms takes
on the largest values. The inset of Fig. 6 shows the
histogram of the positive MLEs. The histogram is
clearly bimodal, with most chaotic pairs yielding an
MLE < 5 s−1. The maximum MLE value is 66 s−1.

In principle, any chaotic pair could be worth
considering. However, it is preferable to focus on the
pairs that generate higher MLEs, i.e. on those pairs
in which chaos is more apparent. In the following,
we therefore take into account the pairs for which
MLE > 5 s−1 and that are henceforth referred to as
“highly-chaotic pairs”. Another reason that justifies
the choice of a threshold of 5 s−1 is that, because the
experimentally sampled signals have a duration of
1 s, the threshold approximately corresponds to the
smallest value of an MLE detectable by using the
divergence exponent algorithm [Gao & Zheng, 1993;

Fig. 6. Map of the averaged numerically assessed MLE
expressed in s−1 (color scale) for each one of the 7000 pairs of
p0, B0. For each pair, the average is computed on the related
set of ten simulations. Only chaotic pairs, i.e. correspond-
ing to positive MLE values, are plotted. (inset) Histogram
of the MLE of the chaotic pairs. The vertical dashed line
at MLE = 5 s−1 separates the two parts of the bimodal
histogram.

Rosenstein et al., 1993; Kantz, 1994; Kantz et al.,
2013] that allows to determine the MLE out of an
experimentally sampled signal. It is worth noting
that the “highly-chaotic” pairs lie along the right
side of the triangular region shown in Fig. 6.

Figure 7 shows a scatter plot of the relative ISI
standard deviation sISI/mISI as a function of the AC

Fig. 7. Scatter plot of the relative ISI standard deviation
sISI/mISI as a function of the AC rms V0σx, in the case of
the numerically integrated signals. Each dot corresponds to a
chaotic pair. The color of the dot expresses the related MLE
via the same palette as in Fig. 6. The red, dashed straight-
line separates the highly-chaotic pairs from the other ones
and corresponds to the curve of Eq. (6). (inset) X–Z phase
portrait corresponding to a possibly chaotic behavior that
was achieved by setting p0 = 1.333, B0 = 0.088.
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rms V0σx and with each dot being colored according
to the related MLE. For each pair, the two statistics
mISI, sISI are evaluated as sample mean and sam-
ple standard deviation, respectively, on the related
set of ten sampled signals. Interestingly, the chaotic
pairs having the maximum relative ISI standard
deviation do also take on the largest MLE values.
More in detail, the highly-chaotic pairs turn out to
be located above the separation curve

sISI

mISI
= 3.4 · 10−3 · 510σx . (6)

The shape of the curve, which becomes a straight-
line in a log-linear plot as in Fig. 7, as well as the
two parameters that define it — namely the factor
3.4 · 10−3 and the base 5 — were empirically deter-
mined. Finally, all chaotic pairs lie in the region
defined by V0 σx > 1 V.

5. Interpretation and Evidence of
Chaos in the Experimental Data

The evidence of a set of highly-chaotic pairs that
emerges from the numerical simulations can be
exploited in the analysis of the experimental data.

Figure 8 shows a scatter plot of the experimen-
tal relative ISI standard deviation sISI/mISI as a
function of the AC rms σX . While in Fig. 7, the
points are approximately uniformly distributed in a
region defined by V0 σx > 1V, two different point
sets are apparent in the experimental case. A left-
most set (blue points) is V-shaped and occurs for
σX � 1 V. The analysis of the phase portraits of
the signals generated with pairs belonging to this
set (see for example the left inset of Fig. 8) sug-
gests an underlying local dynamics emerging after
a Hopf bifurcation, as described by Meucci et al.
[2021]. Also in this case, noise naturally occurring
in the experimental implementation is supposed to
play a significant role. The remaining, rightmost set
(green and orange points) is instead egg-shaped,
with most points occurring in the vertical range
10−3 ≤ sISI/mISI ≤ 10−1. Comparing the point dis-
tribution with the numerically assessed one repre-
sented in Fig. 7, a vertical upward compression is
evident, which is likely due to the presence of noise
in the experimentally sampled signals.

In a crucial step of the present analysis, the
egg-shaped set is then divided into two subsets by
using the theoretical separation curve expressed by
Eq. (6). Within Fig. 8, the experimental points
for which V0 σx > 1V and lying above (below)

Fig. 8. Scatter plot of the relative ISI standard deviation
sISI/mISI as a function of the AC rms σX , in the case of the
experimentally sampled signals. Each dot corresponds to a
chaotic pair. The colors of the dot are: blue if V0 σx < 1V;
otherwise, orange (green) if the corresponding pair lies above
(below) the separation curve (in fact a straight-line in a log-
linear plot) defined by Eq. (6). (left inset) X–Z phase portrait
corresponding to the signal acquired by setting the pair to
p0 = 1.323, B0 = 0.073 (point “H”). (right inset) X–Z phase
portrait corresponding to the signal acquired by setting the
pair to p0 = 1.414, B0 = 0.092 (point “1”). Both “H” and
“1”, along with five additional pairs, namely “2”, “3”, “4”,
“5”, “L”, correspond to the seven pairs reported in Table 4.
All these pairs are here marked with a black circle.

the curve, and thus inside (outside) the numeri-
cally assessed, highly-chaotic region, are colored in
orange (green), similarly to the numerically assessed
points of Fig. 7. Five pairs, labeled from “1” to
“5” and belonging to the numerically assessed,
highly-chaotic region, were then randomly selected.
For the sake of comparison, two additional pairs,
labeled “H” (Hopf) and “L” (low MLE), were also
selected: “H” lies in the V0 σx < 1 V region; “L”

Table 4. Coordinates (p0, B0) of the
seven pairs chosen in the three different
regimes identified in Fig. 8.

Label p0 B0

H 1.323 0.073
L 1.323 0.093
1 1.414 0.092
2 1.404 0.099
3 1.363 0.082
4 1.323 0.074
5 1.318 0.092
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has V0 σx > 1V and is located below the separa-
tion curve. The coordinates of the seven pairs are
reported in Table 4. The pairs are graphically high-
lighted in Fig. 8.

For each pair, upon accordingly setting the dig-
ital trimmers, an additional signal of duration 10 s
and sampling frequency 6.25 kHz was acquired. The
resulting sequence was then analyzed by implement-
ing the divergence exponent method on a “lattice”
of embedding points m,L defined by 2 ≤ m ≤ 10,
1 ≤ L ≤ 10. Details of the method and its imple-
mentation are given in [Ricci et al., 2020]. Here we
only mention two main steps, namely the embed-
ding and the divergence exponent evaluations. With
regard to the embedding, given a sampled time
series Xn = X(nT ), where T is the sampling period
of 0.16 ms and n runs from 1 to 62 500, and an
embedding pair m,L (the embedding dimension
and the lag, respectively), the embedded sequence
of vectors Yi is built by setting the lth component
(0 ≤ l ≤ m − 1) of Yi to Xi+lL, where i runs
from 1 to 62 500 − (m − 1)L. Thereupon, given a
delay k, the divergence exponent Λ̂(k) is evaluated
as:

Λ̂(k) ≡
〈

log
‖Yi+k − Yj+k‖

‖Yi − Yj‖
〉

,

where the average is computed on a randomly cho-
sen set of “neighboring” embedding vectors Yi, Yj ,

which have to satisfy suitable time and distance
constraints [Ricci et al., 2020]. The set size is typi-
cally of order 1000.

Figure 9 shows the results for four of the seven
chosen pairs. Regardless of the chosen embedding
choice, in the case of the points labeled “3”, “5”,
“L”, the graph of Λ(k) oscillates with a period
of about 200, which, because of τy, corresponds
to a time of several tens ms and thus to a fre-
quency of order 100 Hz. This last value is close to
the typical oscillation frequency of the experimen-
tally implemented μModel. In addition, the diver-
gence exponent Λ(k) as a function of the delay k
shows no statistically reliable region of sustained,
i.e. significant, linear growth. The presence of a sim-
ilar behavior, whose significance is assessed via a
procedure relying on a Savitzky–Golay linear fil-
ter [Franchi & Ricci, 2014], is crucial: the slope of
a significant linear part indeed provides an exper-
imental assessment of MLE. These two facts do
not hint at the presence of an underlying chaotic
dynamics. With regard to the graphs of Λ(k) con-
cerning the pair “H”, while no oscillatory behavior
appears, a significant linear growth is present only
at higher embedding windows. While this could be
a marker of an underlying chaotic dynamics — pos-
sibly mixed with a noisy one — the fact that the
slopes of the linear parts are strongly dependent
on the embedding choice do not uphold a similar
conclusion.

(a) (b)

(c) (d)

Fig. 9. Graphs of the divergence exponent Λ(k) as a function of the delay k evaluated on experimentally sampled signal
acquired by setting (p0, B0) to the pairs labeled (a) “3”, (b) “5”, (c) “L”, (d) “H”, reported in Table 4. In each plot, i.e. for
each pair, graphs correspond to different embedding choices. The color scale refers to the embedding window (m − 1)L.
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. (Left column) Graphs of the divergence exponent Λ(k) as a function of the delay k evaluated on experimentally
sampled signal acquired by setting (p0, B0) to the pairs labeled (a) “1”, (c) “2”, (e) “4”, reported in Table 4. In each plot, i.e.
for each pair, graphs correspond to different embedding. The color scale refers to the embedding window (m − 1)L. The red,
straight lines correspond to the MLE values evaluated in the respective plots on the right column. (Right column) MLE values
assessed out of the divergence exponent graphs on the left, and thus in the case of experimentally sampled signal acquired
by setting (p0, B0) to the pairs labeled (b) “1”, (d) “2”, (f) “4”. The abscissa of the plot is given by the embedding window
(m−1)L. In the case of “1”, the MLE values are clustered at ≈ (70±20) s−1, with the average value (red line) at (73±13) s−1.
In the case of “2”, the MLE values are clustered at ≈ (50 ± 5) s−1, with the average value (red line) at (51 ± 3) s−1. In the
case of “4”, two clusterings appear: at ≈ (20± 5) s−1 and at ≈ (50± 5) s−1, thus leading to a more uncertain identification of
an underlying chaotic activity. The corresponding two averages are at (22 ± 6) s−1 (red dashed line) and at (53 ± 4) s−1 (red
line), respectively.

Figure 10 shows the results for the three
remaining pairs, namely “1”, “2”, “4”. In the graphs
of Λ(k) of all three cases no oscillatory behavior
appears. In addition, a significant linear growth is
present, which is approximately constant at differ-
ent embedding dimensions. As shown in Fig. 10(b),
this fact is particularly clear in the condition defined
by the pair “1”: the slopes of the linear parts are
mostly clustered between 30 s−1 and 90 s−1. An
average on this set provides a value of (73±13) s−1.
With regard to the pair “2”, the slopes make a clus-
ter at about 50 s−1. Finally, in the case of the pair

“4”, a clustering appears again at about 50 s−1 and
possibly also at about 20 s−1, leading to a more
uncertain identification of an underlying chaotic
behavior than in the two previous cases. In all three
cases the values of the MLE are statistically com-
patible with the range (10 ÷ 66) s−1 evaluated via
the theory and the numerical simulations.

As a final analysis, Fig. 11 shows the map of
the relative ISI standard deviation sISI/mISI evalu-
ated for each pair (p0, B0) on the related set of ten
sampled signals. The pairs belonging to the numeri-
cally assessed, highly-chaotic region of Fig. 8, where
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Fig. 11. Map of the relative ISI standard deviation
sISI/mISI (color scale) for each one of the 7000 pairs of p0, B0

for which σX ≥ 10 mV. The points marked with an orange
circle correspond to the orange points of Fig. 8. The seven
points reported in Table 4 are marked with magenta circles
and labeled accordingly.

they are colored in orange, are accordingly marked
with orange circles in Fig. 11. Interestingly, those
pairs turn out to be located on the boundary of
the wing-shaped region that contains the pairs with
σX ≥ 10 mV, i.e. the pairs for which an oscillation
occurs. Moreover, the three pairs “1”, “2”, “4” that
show a chaotic behavior lie on the lower part of the
wing-shaped region, i.e. in a position very similar
to that of the higher-MLE pairs resulting from the
numerical analysis and appearing in Fig. 6.

6. Discussion

The experimental investigation and the numerical
simulations described above uphold and expand
what was described in the pristine work on μModel
and its experimental implementation [Meucci et al.,
2021].

The main conclusion that can be drawn is that
the μModel works in a very reliable way. Choices
of the parameter pair (p0, B0) that lead to time
series characterized by a relatively high variability
of the relative ISI standard deviation correspond to
a robust chaotic behavior. Nevertheless, there are
several aspects that need a deeper analysis, both
from the theoretical and the experimental points of
view. These aspects can explain the discrepancies
between the experimental model and the theoreti-
cal one.

The first problem is the sensitivity of the X
voltage to noise. By considering the experimental

implementation described in this work, the theory
predicts this quantity to remain in the range of
μV for a significant part of a cycle. On the other
hand, these voltage values are comparable to volt-
age contributions due to noise, which can lead to a
“rebound” of the X variable prior to what would
be expected in an ideal situation. While this aspect
could be exploited in order to develop a noise sensor,
it deserves further investigation in order to precisely
assess the effect of noise on the μModel dynamics.

Similar considerations underlie the second
problem, which also mainly concerns the X vari-
able, namely the sensitivity to bias. For example,
bias can enter the X evolution as noise affecting
the variable Z, which appears in the equation of
dX/dt as a square, thus producing a positive, i.e.
biased, contribution.

However, it is a matter of fact that the two
problems outlined here only marginally affect the
chaotic behavior of the circuit. This fact can be
explained by observing that, first, the chaotic
dynamics becomes dominant only in a twine-ball-
like region [see Fig. 4(c)] of the attractor, which is
characterized by values of Z close to zero and by val-
ues of X close to the midpoint of its range. Second,
the regions in which X approaches its minimum
value are characterized by a very regular behavior
that in no case — i.e. even when the dynamics is
indeed chaotic — contributes to chaos.

A third and final point that one has to cope
with is the finite bandwidth of the ICs used in
the experimental implementation. For example, the
numerical integrations of Eqs. (1) provide maximum
values of the dimensionless variable x of about 3.
These values would correspond to experimental val-
ues of 30 V. However, we observed maximum values
of about 13 V, which is well below the saturation
voltage of the ICs. The discrepancy is mainly due
to the finite gain-bandwidth product of the op-
amp whose output corresponds to X and whose
surrounding network provides a filter with a low-
frequency gain of 33. Again, this aspect does not
influence the chaotic behavior of the system due to
the regular behavior that characterizes the sections
of the trajectory in the phase space that correspond
to the spikes of X.

In conclusion, while the issues outlined above
require further investigations, μModel provides
a promising model to explore chaotic dynam-
ics in an experimental context. Its operational
robustness makes it an ideal candidate to explore
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synchronization effects between two or more oscil-
lators [Minati et al., 2019].
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