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The analysis of electrophysiological recordings of the human brain in resting state is a key 
experimental technique in neuroscience. Resting state is the default condition to characterize brain 
dynamics. Its successful implementation relies both on the capacity of subjects to comply with the 
requirement of staying awake while not performing any cognitive task, and on the capacity of the 
experimenter to validate that compliance. Here we propose a novel approach, based on permutation 
entropy, to assess the reliability of the resting state hypothesis by evaluating its stability during 
a recording. We combine the calculation of permutation entropy with a method to estimate its 
uncertainty out of a single time series. The approach is showcased on electroencephalographic data 
recorded from young and elderly subjects and considering eyes-closed and eyes-opened resting state 
conditions. Besides highlighting the reliability of the approach, the results show higher instability 
in elderly subjects, hinting at qualitative differences between age groups in the distribution of 
unstable brain activity. The method can be applied to other kinds of electrophysiological data, like 
magnetoencephalographic recordings. In addition, provided that suitable hardware and software 
processing units are used, the implementation of the method can be translated into a real time one.

The characterization of brain states by relying on the analysis of electrophysiological recordings is a fundamental 
issue in neuroscience and a basic tool in the medical practice. Among the possible brain states, the so-called resting 
state plays a major role in the investigation of brain functional organization1. The interest in resting state brain 
dynamics was first prompted by Biswal et al.2 in the context of functional magnetic resonance imaging (MRI). 
Since then, the resting state paradigm has been widely used also in connection with electroencephalographic 
(EEG) and magnetoencephalographic (MEG) analytical techniques3–5. A well-known result concerning the 
brain organization in resting state is provided by the identification, primarily via functional MRI, of resting state 
networks6,7. Among these, the “default mode” network is possibly the most studied one8,9.

The definition of the resting state condition is procedural: typically, resting state corresponds to subjects 
being instructed by an operator to “do nothing”, i.e. not to perform any cognitive task, while either keeping their 
eyes closed or fixating a static marker on a screen. Once the instruction is provided, the subject is entrusted with 
its implementation. As a matter of fact, the operator does not have more than trust to depend on in order to 
establish the reliability of the outcome of an experiment. How to objectively determine the quality of the resting 
state implementation is an unsolved issue. Two different approaches can be envisaged. A first possibility is to 
devise rigorous and reproducible protocols to be followed when conducting resting state experiments10. Indeed, 
as some researchers have pointed out11,12, a lack of a shared consensus on the implementation of a resting state is a 
possible reason for the ongoing underutilization of resting state measurements in clinical applications. However, 
regardless of how meticulously it is implemented, a protocol cannot provide any a posteriori assessment of the 
reliability of recorded data. Conversely, the second approach consists of assessing the stability of resting state 
by means of a measurable quantity. This strategy was followed, for example, by using graph metrics in order to 
evaluate the reliability of resting state brain networks identified through functional MRI13.

The goal of the present paper is to develop a technique to evaluate the stationarity of a system ahead of—and 
setting constraints to—any further, field-specific analysis. As a major application case, we address the problem 
of stability of the resting state assumption by analyzing segments of EEG time series to detect variations in the 
dynamical state of the brain. To this purpose, permutation entropy14 (PE) is used as a marker of time series 
complexity. Among approaches typical of information theory to carry out advanced, nonlinear analysis of EEG 
recordings, PE has recently become increasingly popular thanks to the simplicity of implementation15: PE was 
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proposed, for example, as a mean to automatically detect epileptic seizure16 and as a biomarker for Alzheimer’s 
disease17. The technique might be used as an additional component of a quality control protocol18,19.

The approach proposed here addresses a different issue with respect to the so-called “test-retest reliability” 
of electrophysiological measurements20. In this latter approach, two sessions separated in time by a few days up 
to a few years are used to evaluate the stability of a given measure, such as source current density estimates21 or 
spectral and fractal properties derived from EEG data22. More recently, the reliability of sessions time separated 
by one week was investigated on measures of spectral power, functional connectivity and brain “microstates”23. 
Our approach instead concerns recordings within the very same session, whereby nonstationarity can emerge 
due to short-term phenomena, such as fatigue, that are undetectable when comparing separate sessions.

The data considered here are EEG recordings of healthy young and elderly subjects and reconstructed at 
a set of brain locations. Data are extracted from the LEMON public database24, in which resting state EEG 
recordings are available both in eyes-closed (EC) and eyes-opened (EO) conditions. The availability of several 
interleaved EC-EO segments for each subject provided the necessary segmentation to evaluate resting state 
stability. Although one might argue that alternating EC-EO states violates the pure resting state assignment, the 
simplicity of the task is not expected to affect the resting state condition, while avoiding mental drifts like falling 
asleep or boredom.

The analysis proposed here is carried out by evaluating PE on different segments under the null hypothesis 
of its constancy during the whole recording in each one of the two conditions. The analysis immediately calls for 
the necessity of estimating the uncertainty of PE assessments. To this purpose, we relied on a recently developed 
technique25 that allows for overcoming the problem of each time series being a singleton. In the final step of 
the analysis, a chi-square test is used to determine the statistical significance of the stationarity hypothesis. 
These features underpin the novelty and robustness of the approach introduced here, whose scope is not 
limited to neuroscience. Indeed, the method discussed here is useful in any field where it is necessary to detect 
nonstationarity of a system’s dynamics out of time series. In this sense, the procedure described in the present 
work can be implemented as a “stationarity test” prior to any analysis pipeline: the detection of nonstationarity—
e.g. in brain recordings in terms of resting-state instability—could be used as a filter to check the quality of the 
analyzed data, or as a preliminary information in order to choose between different analysis methods.

Assessing the stability of the resting state
The dataset considered here corresponds to two sets of subjects: a “young” set of 30 healthy subjects in the 
age range between 20 and 35 years old, and an “elderly” set of 30 healthy subjects in the age range between 60 
and 80 years old. For each subject, we extracted sequences of current dipole power reconstructed at 30 brain 
locations, henceforth referred to as “nodes”. Each sequence consists of 12 segments, six corresponding to the 
EC condition and six to the EO condition, whereas the two conditions are interleaved. Each segment instead 
consists of 15000 samples that, due to the 250 Hz sampling frequency, cover a time interval of 60 s. Details of the 
sequence extraction and the related preprocessing are provided in the Methods section. The total number of time 
series analyzed is (30 + 30) × 30 × 12 = 21600. For each subject, node and condition, six values of PE and the 
related uncertainty are estimated by means of the steps also described in the Methods section. The permutation 
dimension m = 7 was chosen as a trade-off between resolution capability and computational affordability. In 
the Methods section we also discuss the effect of choosing a different dimension and, in addition, a different 
sampling frequency.

Figure 1 shows an example for a single subject belonging to the young group and a single node. Stability is 
assumed to occur whenever PE is independent of time, i.e. fluctuations of PE between segments are statistically 
compatible with the uncertainty associated to the PE values. The stability of the resting state is then evaluated 
for each of the two sets (EC and EO) of six PE assessments as follows. A constant value ĥ, corresponding to a 
horizontal line in the plot, is fitted to the data. The p-value corresponding to the resulting χ2 statistic is then 
evaluated by relying on a χ2 distribution with 5 degrees of freedom. Consequently, given a subject, node and 

Fig. 1.  Example, for a single subject, of the resting state stability analysis. The dashed lines correspond to the 
constant ĥ fitted to the two sets (EC and EO) of PE values. As explained in the main text, the EC condition (red 
squares) is unstable, whereas the EO condition (green dots) is stable.
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condition, resting state is deemed to be “stable” (“unstable”) if the p-value overcomes (is less than) the Bonferroni-
corrected significance threshold of 0.05/30 ≃ 0.0017.

The values of the best-fit constant ĥ for the EC and EO conditions are equal to 5.0 ± 0.1 and 5.29 ± 0.04
, respectively. The χ2 test provides, for the two conditions, p-values equal to 2 · 10−10 and 0.087, leading to 
the conclusion that resting state under the EC condition is unstable, whereas stability occurs under the EO 
condition.

Stability analysis in terms of age, condition, and brain region
The results of the stationarity assessment are displayed in Fig. 2 for young subjects, and Fig. 3 for elderly subjects. 
Each figure shows a color map of stability as a function of subject and node. Specifically, to each subject-node 
pair, a different color is assigned depending on stability: white color if both EO and EC are deemed to be stable; 
light green for unstable EC; bluish green for unstable EO; dark purple for both unstable EC and EO. Moreover, 
on top of the color maps, a histogram shows, for each node, the number of subjects for which that node is 
deemed to be “unstable” in either the EC or EO condition. In the top panel histogram for each node two bars are 
present, one corresponding to the count of EC unstable pixels and one to the count of EO unstable pixels. In this 
way, (in-)stability is averaged across all subjects belonging to the same age group.

The data displayed in Figs. 2 and 3 suggest that “instability” of resting state is not uncommon: the number of 
subjects in which an “unstable” resting state condition is detected is close to one third of the whole set of subjects. 
Averaging on the 30 nodes, the frequency of unstable nodes for the young group is ≃ 26% (EC) and ≃ 28% 
(EO), while for the elderly group it is equal to ≃ 44% (EC) and ≃ 34% (EO). In other words, the number of 
subjects exhibiting “instability” is generally larger for the elderly group than for the young group, regardless of 
the brain location. This observation can be explained by elderly subjects tending to be more affected by fatigue.

The smaller panel to the right of each color map reports a histogram of the number of subjects as a function 
of the number of stable nodes. For each age group, this histogram provides a pooled assessment of reliability. 
While the distribution for young subjects is right-skewed, with most subjects having a number of stable nodes 
≳ 20, the distribution for elderly subjects appear to be more noisy, with the majority of subjects exhibiting 
either a “globally stable” or a “globally unstable” resting state. This observation might reflect an underlying lower 
modularity in elderly subjects26, namely the fact that brain dynamics tends to involve many areas.

Fig. 2.  Stationarity assessment results for the set of young subjects. The color map shows subject-node 
stability: each row corresponds to a subject, ordered by increasing number of stable nodes (from bottom to 
top). The top panel histogram corresponds to the number of subjects for which a given node is deemed to 
be unstable under the EC or EO condition. The bottom-right red histogram displays the distribution of the 
number of stable nodes.
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Complexity of stable resting states
Whenever a combination of subject, node and condition is deemed to be stable, the corresponding ̂h value, which 
is indeed an average PE, can be taken as a marker to characterize the complexity of the underlying dynamics. The 
distributions of ĥ values corresponding to stable resting state are shown in Fig. 4, grouped by age and condition. 
It is first worth highlighting that the maximum PE value with m = 7, corresponding to white noise time series, 
is ln 7! ≃ 8.525: according to the data shown in Fig. 4, the EEG recordings analyzed here do not correspond to 
a purely stochastic dynamics.

The four distributions displayed in Fig.  4 are comparable in width and shape, though with a slight shift 
towards higher PE values occurring in the elderly sets.

To quantify possible differences due to age, condition or brain area in the PE values corresponding to “stable” 
resting state, we set up a three-way ANOVA followed by a post-hoc test on significant effects. The significance 
level was set to 0.05. Data were factored by age (young, elderly), condition (EC, EO) and brain region (central, 
occipital, frontal, parietal, temporal). Each group contains between 82 and 155 values (120 on average). The 
three-way ANOVA, implemented in R27, returned a significant main effect (p < 0.001) for all three factors. We 
refrain from considering interaction effects, as such a detailed analysis goes beyond the scope of the present 
work.

As far as age is concerned, the post-hoc test revealed a significantly higher PE for elderly subjects, possibly 
implying a more noisy activity. On the other hand, the EO condition turns out to correspond to a higher PE with 
respect to the EC condition. These two observations are indeed in line with a qualitative conclusion that can be 
drawn from Fig. 4. Regarding the significant effect of the brain area factor, the post-hoc test reveals that each area 
provides a significantly different PE values with respect to the others, except for the central-occipital pair. Taking 
into account the sign of these differences, one can order the brain areas from the lowest to the highest PE value, 
i.e. from the one exhibiting a more ordered dynamics to the one being more noise-like: central and occipital; 
parietal; temporal; frontal. To provide a visual reference for the latter result, the data of Fig. 4 are plotted in Fig. 5 
grouped by area, rather than age and condition.

Fig. 3.  Stationarity assessment results for the set of elderly subjects. The color map shows subject-node 
stability: each row corresponds to a subject, ordered by increasing number of stable nodes (from bottom to 
top). The top panel histogram corresponds to the number of subjects for which a given node is deemed to 
be unstable under the EC or EO condition. The bottom-right blue histogram displays the distribution of the 
number of stable nodes.
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Discussion
By virtue of a surrogate-based technique for the estimation of PE uncertainty25, here we proposed a novel 
approach to assess the stationarity of recorded time series. We showcased the approach by evaluating the stability 
of resting state and by exploiting, as a benchmark, the EC-EO conditions. While the use of PE was described in 
the scientific literature, for example, to classify sleep stages28 and pathological29 or drug-induced conditions30, 
wake, healthy resting state recordings have obtained less attention31.

The EC-EO paradigm is typically studied in terms of the spectral changes, most notably the presence of 
alpha rhythms in EC32. More recently, the EC-EO paradigm was analyzed through an information-theoretic 
approach in two works, which found similar results to the one presented here in terms of PE differences between 
conditions. In the first one33, the authors analyzed EEG recordings under the two conditions by applying a 
method34 aimed at assessing the transition probabilities of ordinal patterns (i.e. permutations) and determining 
the so-called network-averaged node entropy and asymmetry coefficient. The authors showed that the EO 
condition is characterized by higher entropy values, accompanied by a lower asymmetry coefficient, with 
respect to the EC condition. In the second paper35 the authors described an approximate entropy analysis of 
EEG recordings recorded in the two conditions, again showing that the EO condition provides higher entropy 
values than the EC. Those results are in agreement with the ones obtained with the present analysis: we also 
found higher PE values in the EO condition.

It is worth remarking that the works mentioned above carried out the respective analyses in sensor space: 
while this approach is computationally less demanding, one has to keep in mind that the influence of volume 
conduction might produce spurious results, as it was shown in the case of connectivity measures36,37. While the 
present method could be applied to sensor space data as well, the reconstruction of source activity enhances 
the interpretability of the results: assuming that stability is a property of the system (sources) rather than the 

Fig. 5.  Distribution plots of the values of ĥ corresponding to a “stable” resting state grouped by brain area. The 
dash-dotted line corresponds to the maximum PE value for m = 7, namely ln 7! ≃ 8.525. The number of ĥ 
values contributing to each distribution are, from left to right: 549, 486, 503, 442, 426.

 

Fig. 4.  Distribution plots of the values of ĥ corresponding to a “stable” resting state for the young-elderly 
and EC-EO groupings. The dash-dotted line corresponds to the maximum PE value for m = 7, namely 
ln 7! ≃ 8.525. The number of ĥ values contributing to each distribution are, from left to right: 643, 645, 507, 
591.
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instrument (sensor), the assessment turns out to be more robust and its interpretation in terms of underlying 
brain dynamics is more immediate.

PE is a well-established complexity quantifier capable of detecting dynamical changes in time series38 by virtue 
of its definition depending on a weak stationarity assumption14. The use of PE in neuroscience has acquired in 
the last decades an increasingly relevant role15,39,40. The most relevant clinical application of PE is its being a 
promising biomarker41 for the early diagnosis of cognitive diseases, most notably mild cognitive impairment 
and Alzheimer’s disease17,42. A potential clinical use of PE was also explored in the context of traumatic brain 
injury43, as well as to predict epileptic seizures44–46 and to measure the effect of anaesthetic drugs47. Within the 
context of neuroscience, the approach presented here provides a statistically robust way to investigate stability of 
resting state, which might be used as a biomarker to distinguish healthy and pathological conditions out of EEG 
recordings. This application, which would be of major clinical interest, is beyond the scope of the present work 
and would call for dedicated randomized studies.

The studies referenced above have a common limitation, namely the fact that the application of information-
theoretical tools to electrophysiological data is often lacking an estimation of the related uncertainty, despite 
the availability of asymptotic formulas48,49: the significance of the quantities inferred in the analysis is typically 
based on averaging over a set of subjects. Conversely, the approach followed here, which relies on surrogate-
based estimation of PE uncertainty, is capable of assigning an uncertainty value to each PE assessment. This 
capability paves the way to the possibility of drawing subject-specific quantitative conclusions from data. This 
possibility is crucial, as attested by the significant between-subject variability of the present results. As it is clearly 
visible from Figs. 2, 3, the stability of a specific node is non-trivially dependent on the subject. Such variability, 
which is typical of neuroscientific data, further highlights the need for quality control approaches that can be 
applied subject-wise, rather than on an averages across subjects. Besides the present application to assess the 
stability of the resting state condition, the possibility of drawing quantitative conclusions on single subjects is of 
primary importance in the development of diagnostic biomarkers based on EEG measures50 and other kinds of 
electrophysiological data like, for example, magnetoencephalographic recordings.

The present study is, to our knowledge, the first one to address the issue of a stationary behavior of nodes 
by means of permutation entropy. Future developments might regard the application of the method to more 
challenging neuroscientific contexts, as well as to investigate the link of stability with other brain observables 
and its role in the brain function.

As final remarks, it is worth noting that a real time implementation of the method just depends on the 
hardware and software units that are used to process data. In addition, the method proposed in the present 
work is not limited to neuroscience: its scope can be widened to include any field where it is necessary to detect 
nonstationarity of a system’s dynamics out of singleton time series.

Methods
Dataset and preprocessing
EEG data used in the present work belong to the Leipzig Mind-Brain-Body “LEMON” database24, which is 
publicly available51. Data were recorded in compliance with the Declaration of Helsinki and the related study 
protocol was approved by the ethical committee at the University of Leipzig (reference number 154/13-ff, see 
also the related data publication24). The available raw recordings were acquired in a sound-attenuated EEG 
booth by means of a 62-channels active ActiCAP EEG device whose electrodes were attached according to the 
international standard 10-20 system. The corresponding signals are digitized with a sampling rate of 2.5 kHz 
upon bandpass-filtering them between 0.015 Hz and 1 kHz. Further details on the data acquisition protocol are 
available in a dedicated publication24. Two sets of subjects are considered: 30 “young” healthy subjects in the 
age range between 20 and 35 years old (19 males, 11 females), and 30 “elderly” healthy subjects in the age range 
between 60 and 80 years old (19 males, 11 females).

Data preprocessing and source reconstruction procedure are described in detail in two previous works26,52. 
For the sake of clarity, we summarize here the key steps. Raw EEG recordings were first filtered within the 
frequency band between 0.1 Hz and 40 Hz by relying on fourth-order high-pass and low-pass filters; however, 
due to the low-pass filter still having at 50 Hz an attenuation of ≃ 16 dB corresponding to a factor ≃ 0.15, 
the power line frequency at 50 Hz was suppressed by means of a notch filter having a width of ∼ 1 Hz; third, 
the sampling frequency was reduced to 250 Hz by downsampling the data. The choice of setting a sampling 
rate of 250 Hz stems from the fact that, for PE to be reliably assessed (see next section), the sampling period 
has to match the typical time scale of the observed dynamics: in the present case, the oscillations due to brain 
dynamics are of order ≲ 100 Hz. Higher sampling rates introduce redundancy in the data, in terms of higher 
occurrence rates of identical consecutive patterns; lower sampling rates produce instead noise-like uncorrelated 
data. Artifacts due to cardiac, muscular and eye activity were removed by relying on an independent component 
analysis. To carry out source reconstruction, head models were built out of the individual MRI scans provided in 
the LEMON database. Source activity was reconstructed by means of the exact low-resolution electromagnetic 
tomography algorithm (“eLoreta”) that provided current dipoles with unconstrained orientations on a 10 mm 
template grid. The extracted sequences correspond to current dipole power reconstructed at 30 brain locations, 
or “nodes”, selected as the centroids of 30 brain regions among the 360 defined in the atlas by Glasser et al.53. The 
regions considered are V1, V6A, V4 (occipital); 4, 5L, 6mp (central); Pfm, PF, STV (parietal); STGa, TE1a, TA2 
(temporal); 10d, 10pp, p10p (frontal); each region was selected symmetrically in both hemispheres.

Each EEG acquisition run consists of 16 alternated segments in EC (8 segments) and EO (8 segments) 
conditions. To reduce transient effects, we selected 12 consecutive segments, namely 6 EC and 6 EO, by discarding 
the first two and the last two segments of each run. Each raw segment covers between ≳ 60 s and 90 s: with the 
same purpose of reducing transients, we trimmed each segment to 60 s, corresponding to 15000 samples, by 
symmetrically removing the leading and trailing data points. In principle, one might want to evaluate PE on 
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shorter segments in order to minimize the effect of nonstationary behaviors. However, a lower bound to the 
length of the time series over which PE can be reliably evaluated is set by the permutation order and thus 
by the number of possible symbolic sequences: in the present case, m = 7 (see next section), so the number 
of samples within a segment should be significantly larger than m! = 5040. Also due to the fact that many 
symbolic sequences do not occur, the chosen length of 15000 appears to be adequate.

Permutation entropy
To compute PE, m-dimensional trajectories yn are constructed by selecting m consecutive elements from a 
scalar time series Y = {yn}: yn = (yn, yn+1, . . . , yn+m−1). A trajectory is then encoded into a permutation 
(sn,1, . . . , sn,m), were sn,j  are integer numbers each corresponding to the rank of yn+j−1 within the trajectory 
yn. As the permutation elements sn,j  belong to the range [1, m], the number of possible permutations is m!. For 
each possible permutation, the observed rate p̂S  is assessed as the occurrence frequency of that permutation. PE 
is finally estimated out of the observed rates p̂S  according to the following expression:

	
Ĥm(Y ) = −

∑
S

(p̂S ln p̂S) + M̂ − 1
2(N − m + 1) ,

where the sum corresponds to the so-called plug-in estimator, while the second term is the Miller-Madow 
correction48,54 that compensates the plug-in estimator bias and depends on the time series length N and the 
number M̂  of observed permutations (M̂ ⩽ m!). (We henceforth assume that 0 ln 0 = 0).

The growth rate of PE with the dimension m corresponds, asymptotically, to the Kolmogorov-Sinai (KS) entropy 
of the underlying source. However, because the number of possible permutations grows as m!, the evaluation 
of PE for m ≳ 10, and thus of the KS entropy, is often impractical for computational reasons. Consequently, 
PE is instead typically employed at fixed m as a marker of complexity or—as in the present work—to detect 
nonstationarity by evaluating it on different segments of a time series38. In this context, the demand of a large m 
has to be traded off against the fact that an unbiased estimation of PE requires the length of the input time series 
to be much larger than the number of observed permutations. The analysis discussed here was carried out by 
considering trajectories having dimension m = 7.

Permutation entropy uncertainty estimation
A key requirement of the analysis discussed in the present work is the estimation of the uncertainty associated to 
each PE assessment. To this purpose, we apply a recently developed method25 that relies on the construction of 
a set of proxy time series out of the original one via surrogate generation55. Specifically, the surrogate generation 
algorithm used here is the iterative amplitude-adjusted Fourier transform (IAAFT) algorithm56,57, whereby the 
amplitude distribution and the (approximate) autocorrelation of the original time series are preserved in the 
surrogate ones. Upon generating a number L of surrogate time series and computing the corresponding PE 
values, the uncertainty on the PE of the original time series is provided by the standard deviation of the L 
surrogate PE assessments multiplied times a suitably trimmed scaling factor α. As it was shown therein, a robust 
choice for the scaling factor, which is henceforth adopted, is α = 2. The number of surrogate time series to 
be generated for each evaluation was set to L = 100, which is computationally affordable while providing a 
sufficiently accurate evaluation of the PE uncertainty.

Dependence of permutation entropy on dimension and lag
In this section we analyze the effect of the choice of partition dimension and of the sampling frequency. Figure 6a 
shows a scatter plot of PE evaluated with m = 7 versus m = 6 and normalized to the respective maximum value 
ln(m!). The plot contains 21600 points, each corresponding to a single time series. The correlation between the 
two evaluations is apparent. However, the values with m = 7 are slightly less than the respective values with 
m = 6, which hints at a higher information resolution for m = 7.

Similarly, Fig.  6b shows a scatter plot of PE evaluated with m = 6, L = 2 versus m = 6, L = 1 and 
normalized to the maximum value ln(6!). The L = 2 values are obtained by downsampling the time series 
by a factor 2. Again, the correlation is apparent with, however, an upward offset for the L = 2 assessment as 
compared to the respective L = 1, which is due to the loss of regularity as a consequence of the downsampling. 
For higher values of PE the offset “saturates” towards the maximum normalized value equal to 1.

One might argue whether an higher value of m, for example m = 8, would further improve the quality of 
the analysis. However, one has to cope with the length of the time series, which has to overcome the number of 
possible permutations (approximately 40000 for m = 8).
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Data availability
Raw EEG recordings used in the present work are available in the LEMON database at Ref.51https://fcon_1000.
projects.nitrc.org/indi/retro/MPI_LEMON.html. 
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