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(23/09/2024) 1. Introduction to the course. Fourier series (part 1/2).

• Introduction to the course.

• Fourier series:

– theorem (no proof).

(24/09/2024) 2. Fourier series (part 2/2).

• Fourier series:

– behavior of coefficients (no proof).

– integrability and differentiability (no proof);

– reality;

– Parseval’s theorem.

• Examples.

(25/09/2024) 3. Wiener-Khinchin theorem (part 1/2).

• Power spectral density:

– definition starting from the Parseval’s theorem in the case of Fourier
series.

• Stochastic processes.

(30/09/2024) 4. Wiener-Khinchin theorem (part 2/2).

• A summary of last lecture:

– power spectral density S(ω) = limT→∞

T
2π 〈|an|

2〉;

– stochastic processes.

• Autocorrelation function of a wide-sense stationary (WSS) stochastic pro-
cess:

– wide-sense stationary WSS stochastic processes;

– autocorrelation function of a WSS stochastic process via ensamble
average.

• Wiener-Khinchin theorem:

– statement and proof.

• Alternative expressions of Wiener-Khinchin theorem:

– discussion on the normalization term in the Fourier transform (and
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Fourier transform via ν rather than ω);

– Wiener-Khinchin theorem expressed via ν = ω
2π and via “one-sided”

PSD;

– transition to continuum, or, from the Fourier series to the Fourier
transform,

∗ X̃(ω) = limT→∞ Tan,

∗ power spectral density S(ω) = limT→∞

1
2πT 〈|X̃(ω)|2〉.

(01/10/2024) 5. Mean square and variance of a stochastic process.
Ergodicity. From the random telegraph to the white noise.

• Mean square and variance of a stochastic process.

• Ergodicity:

– general discussion.

• A WSS stationary process: random telegraph signal :

– derivation of the autocorrelation function;

– power spectral density via Wiener-Khinchin theorem.

• White noise, starting from the random telegraph signal.

(02/10/2024) 6. Shot noise.

• Shot noise:

– heuristic derivation;

– derivation of the PSD.

(07/10/2024) 7. A microscopic approach to fluctuations: viscosity
and Langevin equations.

• Langevin equation for Brownian motion.

• Evolution of velocity.

• Evolution of position.

(08/10/2024) 8. Brownian motion. Johnson-Nyquist noise.

• Brownian motion of a particle in a medium at thermodynamic equilibrium.

• Johnson-Nyquist noise (aka thermal noise) as a corollary of Brownian
motion.
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(09/10/2024) Extra 1. In-class problem solving & “Office hours” 1.

• Worked examples on:

– linear response;

– complex integration;

– solution of exercise 1.2.

(14/10/2024) 9. Spectral properties of Brownian motion.

• Evaluation of the autocorrelation of velocity.

• Power spectral density of velocity.

• A prototypical problem: Johnson-Nyquist noise in a RL circuit:

– evaluation of the autocorrelation of current;

– power spectral density of current;

– relationship with the Johnson-Nyquist noise generated by the resis-
tance.

(15/10/2024) 10. Dampen harmonic oscillator driven by a stochastic
force.

• Derivation of the PSD of the displacement from the equilibrium position
of a dampen harmonic oscillator driven by a stochastic force.

• Effect of the thermodynamic equilibrium.

• Final expression of the PSD and consequences:

– final expression of the PSD;

– Lorentzian-shaped PSD;

– fluctuation and dissipation.

(16/10/2024) Extra 2. In-class problem solving & “Office hours” 2.

• Worked examples:

– solution of exercise 1.1;

– solution of exercise 1.3.

(21/10/2024) 11. LTI systems. Kramers-Kronig relations.
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• LTI systems.

– causal systems;

– real systems.

• Derivation of Kramers-Kronig relations, via Laplace formalism and L1

integrability.

(22/10/2024) 12. Kramers-Kronig relations and dispersion relations.

• A summary of Kramers-Kronig relations.

• Electromagnetic plane waves propagating in a medium and dispersion re-
lation:

– derivation from Maxwell’s equations;

– refraction index, electric susceptibility, dispersion, absorption.

• Dispersion relations, phase velocity, group velocity.

• Consequences of the Kramers-Kronig relations on the speed of light in a
medium.

• A complementary topic: χ′′(ω) > 0 ⇐⇒ dissipation in the case of a real,
LTI system.

(28/10/2024) 13. Fluctuation-dissipation theorem (part 1/2).

• A complementary topic: Susceptibility, impedance, resistance.

• The physical problem of interacting with an ideal system.

• Preliminary topics:

– evaluation of 〈s| Q̂2 |f〉;

– virial theorem.

(29/10/2024) 14. Fluctuation-dissipation theorem (part 2/2).

• Callen andWelton’s quantum-mechanical formulation of fluctuation-dissipation
theorem:

– fluctuation;

– dissipation;

– fluctuation-dissipation theorem (FDT).

• Classical limit.
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(30/11/2024) Extra 3. In-class problem solving & “Office hours” 3.

• Worked examples on:

– Kramers-Kronig relations,

∗ solution of exercise 2.1;

∗ solution of exercise 2.5 (rainbow);

∗ solution of exercise 2.2.

• “Office hours” session.

(04/11/2024) 15. Consequences of fluctuation-dissipation theorem.
Lorentz model.

• Consequences of fluctuation-dissipation theorem:

– FDT with regard to the time-derivative of the observable of interest;

– FDT with regard to the driving field;

– prototypical applications of FDT,

∗ Brownian motion,

∗ RC circuit.

• Lorentz model:

– derivation;

– link with Drude model;

– plasma oscillations and dispersion relation.

(05/11/2024) 16. Dissipation by radiation: black body.

• From Lorentz model and Larmor dissipation to black-body radiation via
FDT.

• Complementary topics:

– customarily derivation of black-body radiation in terms of average
energy density of the electromagnetic field;

– average energy of a quantum harmonic oscillator in thermodynamic
equilibrium with a reservoir (via partition function).

• Stefan-Boltzmann law.

(11/11/2024) 17. Acoustic wave equation.

• Acoustic wave equation in the one-dimensional case.
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• Speed of sound and acoustic impedance.

• Generalization to the three-dimensional case.

(12/11/2024) 18. Dissipation by radiation: sound.

• Spherical waves generated by a pulsating sphere.

• Acoustic radiation resistance.

• Pressure fluctuations via FDT.
Spherical waves generated by a pulsating sphere. Acoustic radiation re-
sistance. Pressure fluctuations via FDT.

(13/11/2024) Extra 4. In-class problem solving & “Office hours” 4.

• Worked examples on:

– noise in simple networks of resistances.

• “Office hours” session.

(18/11/2024) 19. A primer in statistical methods: from probability-
generating function to characteristic function.

• Functional descriptions of distributions and probability density functions:

– probability-generating function G(z) for random variables (r.v.’s)
that take on integer values;

– moment-generating function M(z);

– cumulant-generating function C(z);

– characteristic function F (z).

• Probability-generating function of an integer, linear combination of inde-
pendent, though not necessarily identically-distributed, r.v.’s that take on
integer values.

• Examples:

– probability-generating function of Bernoulli and binomial distribu-
tions;

– derivation of binomial distribution from Bernoulli distribution.

• Central limit theorem: derivation via characteristic function (part 1/2).

(19/11/2024) 20. A primer in statistical methods: central limit the-
orem; Poisson point processes.
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• Central limit theorem (CLT): derivation via characteristic function (part
2/2).

• Comments on CLT:

– the asymptotic limit is a pdf also in the case of a starting (discrete)
distribution;

– asymptotic pdf of a sum of independent, identically-distributed (i.i.d.)
r.v.’s and physical interpretation of the result.

• Examples:

– a binomial distribution asymptotically tends to a Gaussian pdf;

– election polls and uncertainty thereof.

• Poisson point processes:

– defining properties,

∗ independent events,

∗ vanishing probability of coincidence,

∗ dP = Γdt.

– probability distribution.

(25/11/2024) 21. An overview on generation and detection of light
and on photoelectric effect. Quasi-monochromatic light sources.

• An overview on generation and detection of light:

– generation of light,

∗ incandescence (Stefan-Boltzmann law),

∗ luminescence, induced by . . .

· charges (electroluminescence, LEDs),

· electron collisions (cathodoluminescence, discharges),

· photons (fluorescence, phosphorescence),

∗ lasers;

– detection of light:

∗ chemical reactions (retinae, photographic plates),

∗ heat detectors (referred to as bolometers if they rely on the vari-
ation of an electric quantity, e.g. resistance),

∗ photomultipliers,

∗ semiconductor (pn) junctions,

· I − V characteristics,

· solar cells,

· photodiodes,

· avalanche photodiode.
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• An overview on photoelectric effect:

– Einstein equation;

– transition probability;

– quantum efficiency;

– photocurrent as a function of light intensity.

• Quasi-monochromatic light sources:

– electric field.

(26/11/2024) 22. Quasi-monochromatic and thermal (extended) light
sources.

• Quasi-monochromatic light sources (continuation):

– autocorrelation of electric field and its complex amplitude;

– light intensity;

– average intensity of a stationary source.

• Thermal light sources.

• Statistical properties of electric field of stationary, thermal light:

– vanishing average complex amplitude;

– autocorrelation of complex amplitude.

• Statistical properties of intensity of stationary, thermal light:

– average intensity;

– autocorrelation of intensity.

(27/11/2024) Extra 5. In-class problem solving & “Office hours” 5.

• Worked examples on:

– probability and statistics,

∗ solution of exercises 4.1, 4.2, 4.3, combinatorial problems on per-
mutations and combinations,

∗ solution of exercise 4.4, probability of shared birthdays in a group
of n people, by using Stirling’s approximation for the factorial,

∗ discussion on the exercise 4.6, concerning the distribution of the
waiting time in a Poisson point process.

• “Office hours” session.
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(04/12/2024) 23. Coherence (part 1/2). Young’s double slit experi-
ment. Michelson stellar interferometer.

• Coherence measures for the electric field:

– mutual coherence Γ1,2(τ);

– self-coherence Γ1,1(τ) and intensity I1 = Γ1,1(0).

• Correlation of electric field and degree of first-order coherence g
(1)
1,2(τ).

• Young’s double-slit experiment.

• Michelson interferometer and measurement of star diameter.

• A mention of Hanbury Brown and Twiss stellar interferometer.

(05/12/2024) 24. Coherence (part 2/2). Photon counting.

• Introduction: generation of photoelectrons.

• Photon counting distribution:

– solution via pgf for a specific “intensity trajectory”;

– ensemble average on “intensity trajectories”;

– population mean and variance of n(t);

– relation with. . . (see next line).

• Correlation of intensity and degree of second-order coherence g
(2)
1,2(τ).

• Photon counting statistics (in terms of population mean and variance of
n(t)) in the case of thermal light:

– limit of long integration times;

– limit of short integration times and photon bunching.

• A model of collisional broadening(⋆):

– autocorrelation of complex amplitude for a single emitter;

– autocorrelation of complex amplitude and intensity of a thermal
source.

(⋆) discussion completed in lecture # 28.

(09/12/2024) 25. Amplifiers (part 1/2).

• Operational amplifiers as a prototypical implementation of two-port net-
works.

• Basics of operational amplifiers (dynamical behavior in the frequency do-
main):
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– Vout = A(V+ − V−), with A = A0

1−iν/ν0
;

– general amplifier configuration.

• Noise and operational amplifiers (1/2):

– external noise sources in the case of the general amplifier configura-
tion;

– internal voltage and current noise sources.

(10/12/2024) 26. Amplifiers (part 2/2).

• Noise and operational amplifiers (2/2):

– expression in the case of the general amplifier configuration.

• Examples:

– noise generated by buffers based on different operational amplifiers
(OP07 and LM411);

– noise generated by an operational amplifier (LM411) with G0 = 103

gain (inverting input connected to ground via 1 kΩ; feedback resis-
tance of 1 MΩ) and non-inverting input connected to ground (left as
homework exercise);

– prevalence of shot vs. thermal noise in a resistor (left as homework
exercise).

(11/12/2024) Extra 6. In-class problem solving & “Office hours” 6.

• Worked examples on:

– determination of the equivalent noise bandwidth (ENBW) in the case
of a n-order low-pass filter;

– prevalence of shot vs. thermal noise in a resistor (see lecture of
10/12/2024).

• “Office hours” session.

(16/12/2024) 27. In-class problem solving (1/2).

• Solution of the problems of the written exam of 20/12/2023, about:

– systems and signals;

– noise;

– probability and statistics.
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(17/12/2024) 28. Complementary topics. In-class problem solving
(2/2).

• Complementary topics:

– distribution of the waiting time (for an event to occur) in a Poisson
process;

– a model of collisional broadening (see lecture of 05/12/2024);

– thermal noise of a complex impedance (corollary: thermal noise of
resistors in series and in parallel).

• Solution of the problem of the written exam of 12/01/2024, about

– noise.

(18/12/2024) Extra 7. In-class problem solving & “Office hours” 7.

• Worked examples on:

– problem 3 of the written exam of 06/02/2024 (about noise).

• “Office hours” session.

(08/01/2025) Extra 8. In-class problem solving & “Office hours” 8.

• Worked example on:

– noise generated by an operational amplifier (LM411) with G0 = 103

gain (inverting input connected to ground via 1 kΩ; feedback resis-
tance of 1 MΩ) and non-inverting input connected to ground (see
lecture of 10/12/2024).

• “Office hours” session.
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