Detailed SYLLABUS of the course

LABORATORY OF ADVANCED ELECTRONICS

Department of Physics, University of Trento, a.y. 2018–2019

Lecturer: LEONARDO RICCI

(last updated on December 5, 2018)

LECTURES

(17/09/2018) 1. Introduction to the course.

- Main topics of the course.
- Signals processing:
 - analog signal processing;
 - noise,
 - * Johnson noise,
 - * shot noise,
 - * quantum noise;
 - digital signal processing (DSP).

(19/09/2018)~~2.~ Signals and Systems. Sequences and LTI Systems. Basic properties of LTI systems.

- Signals and Systems.
 - a formal definition of signals and systems.
 - sequences as discrete-time signals.
- Sequences:
 - definition;
 - graphical representation;
 - remarkable sequences: impulse-sequence $\delta[n]$, step-sequence u[n];
 - delayed sequences, relation between $\delta[n]$ and u[n];
 - representation of a generic sequence by means of delayed impulsesequences;
 - periodic sequences;
 - energy of a sequence.
- Linear, time–invariant (LTI) systems:
 - action on a sequence, impulse–response (a.k.a. transfer function) h[n], and convolution.
- Properties of an LTI system:

- reality;
- causality;
- marginal stability;
- bound-input, bound-output ("BIBO") stability,
 - * definition,
 - * necessary and sufficient condition for BIBO stability.

(24/09/2018) 3. Difference equations. *z*-transform.

- Difference equations, FIR and IIR systems:
 - general expression of a LTI system described by a difference equation (a.k.a. a linear recurrence relation);
 - non-recursive systems (FIR);
 - recursive systems (IIR);
 - examples,
 - * FIR h[n] in the case of y[n] = x[n] + x[n-1],
 - * IIR h[n] in the case of $y[n] = a \cdot y[n-1] + b \cdot x[n]$.
- z-transform:
 - a short discussion on the importance of changing space, in analogy with continuous systems, to solve difference equations;
 - definition and region of convergence ("ROC");
 - remarkable examples,
 - * $\delta[n]$,
 - * u[n], u[-n-1].
- Basic properties of *z*-transform:
 - linearity (important: beware of intersecting ROCs!);
 - time-shift;
 - convolution theorem.
- Complementary topics: graphical representation of systems:
 - linear combinations of systems;
 - cascade systems, and invertibility of two systems (proof via *z*-transform).

(26/09/2018) 4. Inversion of the *z*-transform.

• Summary of residue calculus:

 $- \frac{1}{2\pi i} \oint_{\Gamma} um \, z_o (z - z_o)^n dz = \delta_{n, -1};$

- $\begin{array}{l} \ G(z) \text{ has an } n^{\text{th}} \text{-order pole in } z_o \Longrightarrow \\ \frac{1}{2\pi i} \oint_{\Gamma \ um \ z_o} G(z) dz = \frac{1}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} [G(z)(z-z_o)^n]_{z=z_o}. \end{array}$
- Inversion of the z-transform:

- proof;

- remarkable examples,
 - * X(z) = 1 with ROC \mathbb{C} ,
 - * (evaluation of the z-transform of $a^n u[n], -a^n u[-n-1],$)
 - * $X(z) = \frac{z}{z-a}$ with ROC |z| < |a|,
 - * $X(z) = \frac{z}{z-a}$ with ROC |z| > |a|;

- exotic, remarkable examples,

- * Fibonacci sequence,
- * Poisson process and distribution (left as a homework).

(01/10/2018) 5. Basic properties of LTI systems as seen in the *z*-domain. Nyquist-Shannon sampling theorem.

- Basic properties of systems as seen in the z-domain:
 - reality,
 - * reality $\Leftrightarrow \overline{X}(\overline{z}) = X(z),$
 - * existence of complex-conjugate zeroes and poles;
 - BIBO stability,
 - * BIBO stability $\Leftrightarrow \Gamma_1 \subset \text{ROC},$
 - * example;
 - causality,
 - * beware: causal $\neq \overline{\text{noncausal}} (k \cdot \delta[n] \dots \text{ is both!}),$
 - * x[n] = 0 for n < 0 (causal) $\Leftrightarrow 0 \notin \text{ROC}, \infty \subset \text{ROC}$ (\Leftarrow Taylor series),
 - * x[n] = 0 for n > 0 (noncausal) $\Leftrightarrow 0 \in \text{ROC}, \infty \not\subset \text{ROC}$ (\Leftarrow Taylor series),
 - * x[n] = 0 for $n \neq 0$ (causual & noncausal; $x[n] = k \cdot \delta[n] \dots$) $\Leftrightarrow 0 \in \text{ROC}, \infty \subset \text{ROC} \Leftrightarrow X(z)$ uniform on \mathbb{C}

(\Leftarrow Liouville theorem: a bounded holomorphic function whose ROC coincides with \mathbb{C} is uniform),

- * example;
- Sampling:
 - generation of a sequence x[n] starting from a continuous signal x(t), $x[n] = x(n \cdot T)$;

- basic issue: how good a continuous signal can be reconstructed from a sequence.
- Important definitions:
 - sampling time/period;
 - sampling frequency/rate;
 - Nyquist frequency;
 - Nyquist band.
- Nyquist–Shannon sampling theorem:
 - conditions: 1a) a continuous signal x(t) is L^2 and 1b) its sampled sequence x[n] BIBO stable;
 - relation between the \mathcal{F} -transform $\tilde{X}(\omega)$ of x(t) and the z-transform X(z) of x[n],

$$X\left(e^{-i\omega T}\right) = \frac{1}{T} \sum_{\forall k} X(\omega + \frac{2\pi}{T}k)$$
 for $\omega \in \left(-\frac{\pi}{T}, \frac{\pi}{T}\right)$ and thus, because of the periodicity, $\forall \omega$.

- additional condition: 2) the continuous signal x(t) is $\frac{\pi}{T}$ -BL (band-limited);
- relation between the \mathcal{F} -transform $\tilde{X}(\omega)$ of x(t) and the z-transform X(z) of x[n], $\tilde{X}(\omega) = TX\left(e^{-i\omega T}\right)$ if $\omega \in \left(-\frac{\pi}{T}, \frac{\pi}{T}\right)$;

– theorem's statement and proof.

(08/10/2018) 6. Aliasing

- Summary of last lecture:
 - definitions (sampling time/period, sampling frequency/rate, Nyquist frequency, Nyquist band);
 - sampling x[n] = x(nT);
 - relation (Nyquist-Shannon precursor equality) $T \cdot X\left(e^{-i\omega T}\right) = \sum_{\forall k} \tilde{X}(\omega + \frac{2\pi}{T}k)$ under the conditions 1a) x(t) is L^2 and 1b) x[n] is BIBO stable;
 - Nyquist-Shannon sampling theorem $T \cdot X \left(e^{-i\omega T} \right) = \tilde{X}(\omega)$ under the condition 2) x(t) is $\frac{\pi}{T}$ -BL.
- Alternative formulation of Nyquist–Shannon sampling theorem:
 - definition of the reconstruction $x_{rec}(t)$ as $x_{rec}(t) \equiv \sum_{\forall k} x[k] \operatorname{sync}\left[(t kT)\frac{\pi}{T}\right];$
 - theorem statement: if x(t) is $\frac{\pi}{T}$ -BL (and L^2 , and x[n] BIBO stable),

 $x_{rec}(t) = x(t).$

- Aliasing in the case of a non- $\frac{\pi}{T}$ -BL signal x(t):
 - additional definitions,
 - * $\tilde{X}_{folding}(\omega) \equiv \sum_{\forall k} \tilde{X}(\omega + \frac{2\pi}{T}k),$
 - * $W(\omega) \equiv [\theta(\omega + \frac{\pi}{T}) \theta(\omega \frac{\pi}{T})] (\frac{\pi}{T}$ -window),
 - * $\tilde{X}_{alias}(\omega) \equiv \tilde{X}_{folding}(\omega) \cdot W(\omega),$
 - * $x_{alias}(t) \equiv \mathcal{F}^{-1}\left(\tilde{X}_{alias}(\omega)\right);$
 - properties of $\tilde{X}_{alias}(\omega)$,
 - * $\tilde{X}_{alias}(\omega)$ is $\frac{\pi}{T}$ -BL, * $\sum_{\forall k} \tilde{X}_{alias}(\omega + \frac{2\pi}{T}k) = \sum_{\forall k} \tilde{X}(\omega + \frac{2\pi}{T}k);$
 - aliasing: if x(t) is not $\frac{\pi}{T}$ -BL,
 - $x_{rec}(t) = x_{alias}(t) \neq x(t),$

i.e. $x_{rec}(t)$ is not equal to x(t) but it is equal to something else (in latin alias), namely $x_{alias}(t)$;

- corollary: $x_{alias}[n] = x_{alias}(nT) = x(nT) = x[n].$
- Remarkable examples: aliasing in the case of sinusoidal and cosinusoidal signals.

(15/10/2018) 7. Simulation of an analog system by means of a digital one.

- Simulation theorem:
 - general discussion;
 - proof assuming 1a) L^2 input signals and transfer function, 1b) a BIBO-stable simulator, 2) $\frac{\pi}{T}$ –BL input signals;
 - expression of the ideal transfer function h'[n] of the simulator.
- Implementation issues and solution:
 - difficulty in the general case of calculating h'[n] (example: first-order low-pass filter);
 - reality: h(t) is real \Rightarrow h'[n] is real;
 - stability of the ideal transfer function h'[n], to be assessed case by case, and ...
 - non–causality issue for the ideal transfer function h'[n] (example: first–order low–pass filter).
- Backward interpretation of the simulation theorem:

- an approach to overcome the implementation issues: requiring the simulator's output g'[n] to approximate the sampled analog output g[n] rather than imposing g'[n] = g[n]. So,

because it is mostly impossible to find H'(z), and thus h'[n], such that it exactly simulates a given $\tilde{H}(\omega)$,

find an implementable V(z), and thus v[n], such that its Fouriertransform equivalent function $V(e^{-i\omega T})$ suitably approximates $\tilde{H}(\omega)$;

- (approximation of an ideal system h'[n], H'(z) through a real one v[n], V(z) via, ex. gr., minimization of the Tchebycheff error or the root-mean-square error;)
- a remarkable example: digital differentiator,
 - * ideal solution $\propto (1 \delta[n]) \frac{(-1)^n}{n}$,
 - * solution $\delta[n] \delta[n-1]$,
 - $\ast\,$ solution via a non recursive (FIR) filter based on delays up to 2 periods.

(22/10/2018) 8. Simulation via bilinear transform: part 1 of 2.

• Bilinear transform:

- bilinear transform statement
$$\omega \to \frac{2i}{T} \frac{z-1}{z+1}, s \to \frac{2}{T} \frac{z-1}{z+1}$$

 $\Longrightarrow V(z) = \tilde{H}\left(\omega = \frac{2i}{T} \frac{z-1}{z+1}\right); V(z) = \tilde{H}_{\text{Laplace}}\left(s = \frac{2}{T} \frac{z-1}{z+1}\right);$

- desirable frequency behaviour for $T \ll bandOfInterest^{-1}$.
- Example: design of a first–order low–pass filter via bilinear transform:
 - derivation of V(z) via bilinear transform;
 - implementation via a difference equation;
 - transfer function $\tilde{V}(\omega)$ via backward interpretation of the simulation theorem;
 - desirable behaviour in the neighbourhood of the Nyquist frequency.
- A summary on Bode diagrams (and on frequency roll-off in filters).

(29/10/2018)~~9.~ Simulation via bilinear transform: part 2 of 2. Filter design.

- Simulation via bilinear transform of a system characterized by a rational transfer function:[*]
 - systems characterized by rational transfer functions $\tilde{H}(\omega) = N(\omega)/D(\omega)$;
 - desirable behaviour in the neighbourhood of the Nyquist frequency

in the case degree $[N(\omega)] < degree [D(\omega)];$

- basic properties,
 - * reality, h(t) real $\Leftrightarrow \tilde{H}^*(\omega) = \tilde{H}(-\omega)$,
 - * causality (to be imposed),
 - * BIBO-stability, h(t) BIBO-stable \Leftrightarrow stable system with rational transfer function $\tilde{H}(s)$ ($\Leftarrow \operatorname{Re} s < 0 \leftrightarrow |z| < 1$);
- implementation of a simulator via a difference equation.

[*] generalization of the first–order low–pass filter example discussed in the previous lecture.

- Implementation via "direct forms" of systems characterized by a difference equation:
 - implementation via direct form I (DFI);
 - implementation via canonical direct form II (DFII), and its transposed version;
 - example,
 - $\ast\,$ first–order low–pass filter.
- Structure of a filter implementing a rational function in the z-domain:
 - effect of zeroes and poles on $\tilde{V}(\omega)$;
 - example: first–order low–pass filter;
 - example (left as a homework): design of a notch filter at $f = f_{Nyquist}/2 = f_{sampling}/4$.

(05/11/2018) 10. Discrete-Fourier-Transform (DFT).

- Discrete–Fourier–Transform (DFT):
 - assumption of the periodicity of x(t), with period NT and calculation of the coefficients of the Fourier series;
 - assumption of the $\frac{\pi}{T}$ -band-limitedness of x(t);
 - (assumption of N being even);
 - derivation of DFT and relation with the Fourier series coefficients;
 - inversion, periodicity, Parseval's theorem.
- Matrix representation of DFT:
 - notation,
 - * $f_n \equiv f[n],$
 - * twiddle factor $W_N \equiv e^{2\pi i/N}$;
 - matrix representation;

- dependence $O(N^2)$ of the number of operations required for the DFT on the dimension N of the input string.
- Short mention on DFT of a nonperiodic function and windowing.
- Example: DFT of $\cos(2\pi ft)$ with $f = 2 \cdot \frac{1}{NT}$ in the case N = 8.

(12/11/2018) 11. Fast–Fourier–Transform (FFT) algorithm.

- Short summary of last lecture.
- - short history: Gauss 1805, Cooley and Tukey 1965;
 - Danielson-Lanczos lemma (decimation, i.e. split);
 - *butterfly* diagram (basic computational unit);
 - element ordering via *bit swapping*.
- Dependence $O(N \log N)$ of the number of operations required for the FFT on the dimension N of the input string.
- Examples of FFT in the case N = 8:
 - FFT of $\cos(2\pi ft)$ with $f = 2 \cdot \frac{1}{NT}$;
 - ... proposed as a homework,
 - * generic sequence $\{f_0, f_1, \ldots, f_7\}$, and equivalence with the DFT,
 - * FFT of $\sin(2\pi ft)$ with $f = 2 \cdot \frac{1}{NT}$,
 - $\ast\,$ FFT of a constant,
 - * FFT of $\delta[n]$,
 - * FFT of $\delta[n-1]$,
 - * FFT of $\delta[n-4]$.

(19/11/2018) 12. An introduction to information theory: Shannon entropy of an ensamble.

- The basic issue: a definition of information, i.e., how it can be measured:
 - Shannon's approach (1948) with uncertainty;
 - example of a sport match.
- Ensambles (Khinchin's finite schemes) as triples made of...:
 - random variable;
 - alphabet of symbols, each corresponding to a realization of the r.v.;

- probability distribution of the r.v.
- Shannon entropy of an ensamble:
 - Shannon-Khinchin axioms;
 - proof of uniqueness theorem;
 - examples.
- Statement of Shannon's source coding theorem:
 - (uniquely decodable) binary symbol codes and compression;
 - expected length $\ell(C, X)$ of a symbol code C encoding an ensamble X;
 - compression issue: given an ensamble X, generate a symbol code C that. . .
 - * is uniquely decodable, and
 - * minimizes the expected length $\ell(C, X)$;
 - statement of Shannon's source coding theorem.
- A mention of Shannon's noisy channel coding theorem.

(26/11/2018) A1. An introduction to information theory: Shannon's source coding theorem for symbol codes; compression. *Additional lecture. Duration: 2h.*

- Summary of lecture 12 (with emphasis on the concept of Shannon information content of an outcome).
- Binary symbol codes and compression issue:
 - definitions related to symbol codes,
 - * (binary) symbol code, codewords, length of codewords,
 - * extended code,
 - * uniquely decodable symbol code and prefix code,
 - a prefix code is uniquely decodable; the contrary is not true (counterexample $\{1, 101\}$),
 - a prefix code is (generally) easy to decode,
 - * examples;
 - expected length L(C, X) of a symbol code C encoding an ensamble X;
 - compression issue: given an ensamble X, generate a symbol code C that...
 - * is uniquely decodable,
 - * is easy to decode (so, possibly, a prefix code),

- * minimizes the expected lengt L(C, X);
- Kraft inequality in the case of unique decodeability,
 - $\ast\,$ expression and proof,
 - * complete symbol code,
 - * given the size $|A_X|$ of an alphabet, existence of a complete, prefix code encoding it (provable by construction).
- Convex functions and Jensen's inequality:
 - convex functions and strictly convex functions;
 - Jensen's inequality,
 - $\ast\,$ proof of Jensen's inequality,
 - $\ast\,$ corollary: equality in the case of a strictly convex function.
- Kullback–Leibler divergence and Gibbs' inequality:
 - relative entropy, aka Kullback–Leibler divergence between two probability distributions;
 - Gibbs' inequality.
- Proof of Shannon's source coding theorem for symbol codes.
- $\bullet\,$ A mention of. . .
 - Huffman *lossless* coding algorithm;
 - Lempel–Ziv *lossless* compression algorithm (LZ77);
 - (once more:) Shannon's noisy channel coding theorem.

LABORATORY CLASSES

(03/10/2018)~ L1. Introduction to Verilog programming on a FPGA device. Counters and frequency dividers.

- Safety rules.
- Introductory exercise: design of a 1 Hz counter with 8–LED array display, relying on standard analog and digital circuitry and a 8 Hz clock source.
- Basic hardware circuits:
 - frequency divider;
 - counter.
- A short overview on FPGA devices.
- Introduction to Verilog programming language:
 - module architecture;
 - example: development of a 8-bit, 1 Hz counter with an 8-LED array display.
- Basic modules implementing basic hardware circuits:
 - frequency divider;
 - counter.
- Assigned exercises:
 - development of a 8–bit, 1 Hz (or 10 Hz) counter with an 8–LED array display;
 - development of a 8–bit, 1 Hz (or 10 Hz) counter with a 2–digits BCD coding and a 2 x 4–LED array display.

(10/10/2018) L2. Multiplexers and demultiplexers.

- Basic hardware circuits:
 - multiplexer;
 - demultiplexer.
- Hardware and software architectures:

- combinatorial and sequential circuits;
- synchronous and asynchronous circuits.
- Verilog language:
 - combinatorial (assign) and sequential (always) Verilog modules.
- A basic module implementing a basic hardware circuit:
 - multiplexer.
- Assigned exercise:
 - development of a chronometer from 0 to 99.99 s (1/100 s resolution), with 2–digits BCD coding and a 2 x 4–LED array display.

$(17/10/2018)\,$ L3. Synchronous counters. Toggle flip-flops. Monostable multivibrators.

- Risetime issue when clocking a flip-flop.
- Basic modules implementing basic hardware circuits:
 - synchronous counter with set to a preset value, and reset;
 - synchronous toggle flip-flop [*];
 - synchronous monostable multivibrator [*];
 - data latch.

[*] to be developed within the exercises.

- Assigned exercises:
 - implementation of a synchronous module **toggle flip-flop**;
 - implementation, by means of a toggle flip-flop, of a toggle pushbutton to switch on/off an LED;
 - observation of the bouncing effect in a pushbutton.

(24/10/2018) L4. Implementation of a chronometer with LCD display.

- Blocking and non–blocking assignments.
- Basic hardware circuits:
 - peripheral device drivers.
- A basic driver module:
 - LCD driver (with display of the lap mode).
- Assigned exercise:

 final implementation of a chronometer with 1/100 s resolution, start/stop, lap/reset function, and LCD display.

(31/10/2018) L5. Driving the DACs and the ADCs hosted on the development board. Nyquist-Shannon sampling theorem made real.

- Solution to the exercise assigned in lab class L4:
 - chronometer.
- Numerical representation of natural and integer numbers:
 - 2's complement representation of integers;
 - inversion of an integer $(-1) \cdot n = (\sim n) + 1;$
 - sum, difference $a b = a + (-1) \cdot b$, multiplication $a \cdot b = |a| \cdot |b| \cdot sign(a) \cdot sign(b)$;
 - multiplication times 2^k and division by 2^k by means of the *shift* operator;
 - using the 2's complement representation with ADC/DACs.
- Basic driver modules:
 - driver of the ADCs placed on the development board;
 - driver of the DACs placed on the development board.
- Assigned exercises:
 - evaluation of the Nyquist frequency and the transfer function gain (voltage-to-number-to-voltage) of a ADC-DAC feedthrough system;
 - implementation of a delayer.

(07/11/2018) L6. Waveform generation.

- Solution to the exercise assigned in lab class L5:
 - differentiator.
- A basic hardware circuit:
 - shift register.
- A basic module implementing a basic hardware circuit:
 - shift register.

- Assigned exercise:
 - implementation of sawtooth waveform generators.

(14/11/2018) L7. Implementation of a harmonic oscillator.

- Solution to the exercise assigned in lab class L6:
 - pseudorandom number generator.
- Theoretical and experimental aspects linked to the development of a harmonic oscillator:
 - general discussion on the difficulty of implementing an oscillator;
 - from the differential equation of a forced oscillator to the z-transform of the simulator response function V(z);
 - derivation of the difference equation;
 - setting of the boundary conditions for the *cosine* operation;
 - dependency of the working frequency $f_0 = \omega_0/(2\pi)$ on the parameter k, provided that $\omega_0 T \ll 1$: $f_0 = f_s/(\pi 2^{\frac{k}{2}+1})$, with $f_s = 1/T$.
- Assigned exercise:
 - implementation and characterization of a harmonic oscillator.

(21/11/2018) L8. Digital filters.

- Solution to the exercise assigned in lab class L7:
 - implementation and characterization of a harmonic oscillator.
- Theory exercise: design of a first–order low–pass filter via bilinear transform:
 - from the Fourier transform of the real system's response function to the z-transform of the simulator's response function V(z);
 - difference equation and canonical direct form II (and transposed DFII) of the simulator;
 - implementation by using a pole placed at $1 2^{-k}$;
 - dependency of the cutoff frequency $f_{3\,\mathrm{dB}} = (2\pi\tau)^{-1}$ on parameter k, provided that $\omega_0 T \ll 1$;
 - frequency behaviour via backward interpretation of the simulation

theorem.

- Experimental exercises:
 - implementation of a first-order low-pass filter;
 - assessment of the transfer function (to be displayed via Bode–diagrams).

(05/12/2018) A2. Transmission lines.

Additional lecture/lab class. Duration: 4h. Location: Electronics EduLab.

- Theory of trasmission lines:
 - useful constants,

*
$$4\pi\epsilon_0 = \frac{1}{9}\frac{\mathrm{nF}}{\mathrm{m}}, \frac{\mu_0}{4\pi} = 10^2\frac{\mathrm{nH}}{\mathrm{m}},$$

* $\frac{1}{\sqrt{\epsilon_0\mu_0}} = c, \sqrt{\frac{\mu_0}{\epsilon_0}} = Z_0 \simeq 120\pi\Omega;$

- calculation of the distributed inductance, capacitance, resistance and conductance in the case of a coaxial line (and mention of the case of a twisted pair ["doppino"]);
- telegrapher's equations and lossless case;
- wave equation for voltage and current in the lossless case;
- solution of the wave equation for voltage and current in the lossless case;
- signal speed v and characteristic impedance Z;
- conditions of validity of the lossless case $(R' \ll \omega L', G' \ll \omega C')$;
- reflection coefficient at a load resistance R_L ,
 - $\ast\,$ derivation and \ldots
 - * case $R_L = Z$,
 - * case $R_L = 0$,
 - * case $R_L = \infty$;
- reflection on case of mismatch of transmission line characteristic impedances;
- impedance of a line section of length ℓ terminated with a resistive load R_L ,
 - $\ast\,$ derivation and \ldots
 - * case $\ell \ll \lambda$,
 - * case $R_L = 0$ or $R_L = \infty$ and a mention of *stubs*,
 - * case $R_L = Z$;

- a mention of half-wave dipole antenna and the value of $Z = 75 \Omega$.
- $Z = 50 \Omega$ as an optimal value from the constructive point of view;
- low frequency impedance matching to maximize power transmission (optimal impedance-matching between generator internal output impedance and load resistance).
- Experimental evidence of signal propagation within a 100 m long, RG58, 50 Ω coaxial cable:
 - propagation speed;
 - load resistance and reflection.

Suggested textbooks and references:

- A. V. Oppenheim, R. W. Schafer, "Digital Signal Processing", Prentice Hall;
- B. P. Lathi, "Signal Processing and Linear Systems", Oxford University Press;
- M. Hayes, "Schaums Outline of Digital Signal Processing", Schaum's Outlines.