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LECTURES

(17/09/2018) 1. Introduction to the course.

• Main topics of the course.

• Signals processing:

– analog signal processing;

– noise,

∗ Johnson noise,

∗ shot noise,

∗ quantum noise;

– digital signal processing (DSP).

(19/09/2018) 2. Signals and Systems. Sequences and LTI Systems.
Basic properties of LTI systems.

• Signals and Systems.

– a formal definition of signals and systems.

– sequences as discrete–time signals.

• Sequences:

– definition;

– graphical representation;

– remarkable sequences: impulse–sequence δ[n], step–sequence u[n];

– delayed sequences, relation between δ[n] and u[n];

– representation of a generic sequence by means of delayed impulse–
sequences;

– periodic sequences;

– energy of a sequence.

• Linear, time–invariant (LTI) systems:

– action on a sequence, impulse–response (a.k.a. transfer function)
h[n], and convolution.

• Properties of an LTI system:
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– reality;

– causality;

– marginal stability;

– bound–input, bound–output (“BIBO”) stability,

∗ definition,

∗ necessary and sufficient condition for BIBO stability.

(24/09/2018) 3. Difference equations. z–transform.

• Difference equations, FIR and IIR systems:

– general expression of a LTI system described by a difference equation
(a.k.a. a linear recurrence relation);

– non–recursive systems (FIR);

– recursive systems (IIR);

– examples,

∗ FIR h[n] in the case of y[n] = x[n] + x[n− 1],

∗ IIR h[n] in the case of y[n] = a · y[n− 1] + b · x[n].

• z–transform:

– a short discussion on the importance of changing space, in analogy
with continuous systems, to solve difference equations;

– definition and region of convergence (“ROC”);

– remarkable examples,

∗ δ[n],

∗ u[n], u[−n− 1].

• Basic properties of z–transform:

– linearity (important: beware of intersecting ROCs!);

– time–shift;

– convolution theorem.

• Complementary topics: graphical representation of systems:

– linear combinations of systems;

– cascade systems, and invertibility of two systems (proof via z–transform).

(26/09/2018) 4. Inversion of the z–transform.

• Summary of residue calculus:

– 1
2πi

∮

Γ um zo
(z − zo)

ndz = δn, −1;
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– G(z) has an nth–order pole in zo =⇒
1

2πi

∮

Γ um zo
G(z)dz = 1

(n−1)!
dn−1

dzn−1 [G(z)(z − zo)
n]z=zo .

• Inversion of the z–transform:

– proof;

– remarkable examples,

∗ X(z) = 1 with ROC C,

∗ (evaluation of the z–transform of anu[n], −anu[−n− 1],)

∗ X(z) = z
z−a with ROC |z| < |a|,

∗ X(z) = z
z−a with ROC |z| > |a|;

– exotic, remarkable examples,

∗ Fibonacci sequence,

∗ Poisson process and distribution (left as a homework).

(01/10/2018) 5. Basic properties of LTI systems as seen in the z–
domain. Nyquist–Shannon sampling theorem.

• Basic properties of systems as seen in the z–domain:

– reality,

∗ reality ⇔ X(z) = X(z),

∗ existence of complex-conjugate zeroes and poles;

– BIBO stability,

∗ BIBO stability ⇔ Γ1 ⊂ ROC,

∗ example;

– causality,

∗ beware: causal 6= noncausal (k · δ[n] . . . is both!),

∗ x[n] = 0 for n < 0 (causal) ⇔ 0 /∈ ROC, ∞ ⊂ ROC
(⇐ Taylor series),

∗ x[n] = 0 for n > 0 (noncausal) ⇔ 0 ∈ ROC, ∞ 6⊂ ROC
(⇐ Taylor series),

∗ x[n] = 0 for n 6= 0 (causual & noncausal; x[n] = k · δ[n] . . . ) ⇔
0 ∈ ROC, ∞ ⊂ ROC ⇔ X(z) uniform on C

(⇐ Liouville theorem: a bounded holomorphic function whose
ROC coincides with C is uniform),

∗ example;

• Sampling:

– generation of a sequence x[n] starting from a continuous signal x(t),
x[n] = x(n · T );
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– basic issue: how good a continuous signal can be reconstructed from
a sequence.

• Important definitions:

– sampling time/period;

– sampling frequency/rate;

– Nyquist frequency;

– Nyquist band.

• Nyquist–Shannon sampling theorem:

– conditions: 1a) a continuous signal x(t) is L2 and 1b) its sampled
sequence x[n] BIBO stable;

– relation between the F–transform X̃(ω) of x(t) and the z–transform
X(z) of x[n],
X

(

e−iωT
)

= 1
T

∑

∀k X̃(ω+ 2π
T k) for ω ∈

(

− π
T ,

π
T

)

and thus, because
of the periodicity, ∀ω.

– additional condition: 2) the continuous signal x(t) is π
T –BL (band–

limited);

– relation between the F–transform X̃(ω) of x(t) and the z–transform
X(z) of x[n],
X̃(ω) = TX

(

e−iωT
)

if ω ∈
(

− π
T ,

π
T

)

;

– theorem’s statement and proof.

(08/10/2018) 6. Aliasing

• Summary of last lecture:

– definitions (sampling time/period, sampling frequency/rate, Nyquist
frequency, Nyquist band);

– sampling x[n] = x(nT );

– relation (Nyquist–Shannon precursor equality)
T ·X

(

e−iωT
)

=
∑

∀k X̃(ω + 2π
T k)

under the conditions 1a) x(t) is L2 and 1b) x[n] is BIBO stable;

– Nyquist–Shannon sampling theorem
T ·X

(

e−iωT
)

= X̃(ω)
under the condition 2) x(t) is π

T –BL.

• Alternative formulation of Nyquist–Shannon sampling theorem:

– definition of the reconstruction xrec(t) as xrec(t) ≡
∑

∀k x[k] sync
[

(t− kT ) πT
]

;

– theorem statement: if x(t) is π
T –BL (and L2, and x[n] BIBO stable),
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xrec(t) = x(t).

• Aliasing in the case of a non– π
T –BL signal x(t):

– additional definitions,

∗ X̃folding(ω) ≡
∑

∀k X̃(ω + 2π
T k),

∗ W (ω) ≡ [θ(ω + π
T )− θ(ω − π

T )] (
π
T –window),

∗ X̃alias(ω) ≡ X̃folding(ω) ·W (ω),

∗ xalias(t) ≡ F−1
(

X̃alias(ω)
)

;

– properties of X̃alias(ω),

∗ X̃alias(ω) is
π
T –BL,

∗
∑

∀k X̃alias(ω + 2π
T k) =

∑

∀k X̃(ω + 2π
T k);

– aliasing: if x(t) is not π
T –BL,

xrec(t) = xalias(t) 6= x(t),
i.e. xrec(t) is not equal to x(t) but it is equal to something else (in
latin alias), namely xalias(t);

– corollary: xalias[n] = xalias(nT ) = x(nT ) = x[n].

• Remarkable examples: aliasing in the case of sinusoidal and cosinusoidal
signals.

(15/10/2018) 7. Simulation of an analog system by means of a digital
one.

• Simulation theorem:

– general discussion;

– proof assuming 1a) L2 input signals and transfer function, 1b) a
BIBO-stable simulator, 2) π

T –BL input signals;

– expression of the ideal transfer function h′[n] of the simulator.

• Implementation issues and solution:

– difficulty – in the general case – of calculating h′[n] (example: first–
order low–pass filter);

– reality: h(t) is real ⇒ h′[n] is real;

– stability of the ideal transfer function h′[n], to be assessed case by
case, and . . .

– non–causality issue for the ideal transfer function h′[n] (example:
first–order low–pass filter).

• Backward interpretation of the simulation theorem:
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– an approach to overcome the implementation issues: requiring the
simulator’s output g′[n] to approximate the sampled analog output
g[n] rather than imposing g′[n] = g[n]. So,
because it is mostly impossible to find H ′(z), and thus h′[n], such
that it exactly simulates a given H̃(ω),
find an implementable V (z), and thus v[n], such that its Fourier–
transform equivalent function V (e−iωT ) suitably approximates H̃(ω);

– (approximation of an ideal system h′[n], H ′(z) through a real one
v[n], V (z) via, ex. gr., minimization of the Tchebycheff error or the
root–mean–square error;)

– a remarkable example: digital differentiator,

∗ ideal solution ∝ (1 − δ[n]) (−1)n

n ,

∗ solution δ[n]− δ[n− 1],

∗ solution via a non recursive (FIR) filter based on delays up to 2
periods.

(22/10/2018) 8. Simulation via bilinear transform: part 1 of 2.

• Bilinear transform:

– bilinear transform statement ω → 2i
T

z−1
z+1 , s →

2
T

z−1
z+1

=⇒ V (z) = H̃
(

ω = 2i
T

z−1
z+1

)

; V (z) = H̃Laplace

(

s = 2
T

z−1
z+1

)

;

– desirable frequency behaviour for T ≪ bandOfInterest−1.

• Example: design of a first–order low–pass filter via bilinear transform:

– derivation of V (z) via bilinear transform;

– implementation via a difference equation;

– transfer function Ṽ (ω) via backward interpretation of the simulation
theorem;

– desirable behaviour in the neighbourhood of the Nyquist frequency.

• A summary on Bode diagrams (and on frequency roll-off in filters).

(29/10/2018) 9. Simulation via bilinear transform: part 2 of 2. Filter
design.

• Simulation via bilinear transform of a system characterized by a rational
transfer function:[*]

– systems characterized by rational transfer functions H̃(ω) = N(ω)/D(ω);

– desirable behaviour in the neighbourhood of the Nyquist frequency
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in the case degree[N(ω)] < degree[D(ω)];

– basic properties,

∗ reality, h(t) real ⇔ H̃∗(ω) = H̃(−ω),

∗ causality (to be imposed),

∗ BIBO–stability, h(t) BIBO–stable ⇔ stable system with rational
transfer function H̃(s) (⇐ Re s < 0 ↔ |z| < 1);

– implementation of a simulator via a difference equation.

[*] generalization of the first–order low–pass filter example discussed in
the previous lecture.

• Implementation via “direct forms” of systems characterized by a difference
equation:

– implementation via direct form I (DFI);

– implementation via canonical direct form II (DFII), and its trans-
posed version;

– example,

∗ first–order low–pass filter.

• Structure of a filter implementing a rational function in the z–domain:

– effect of zeroes and poles on Ṽ (ω);

– example: first–order low–pass filter;

– example (left as a homework): design of a notch filter at f = fNyquist/2 =
fsampling/4.

(05/11/2018) 10. Discrete–Fourier–Transform (DFT).

• Discrete–Fourier–Transform (DFT):

– assumption of the periodicity of x(t), with periodNT and calculation
of the coefficients of the Fourier series;

– assumption of the π
T –band–limitedness of x(t);

– (assumption of N being even);

– derivation of DFT and relation with the Fourier series coefficients;

– inversion, periodicity, Parseval’s theorem.

• Matrix representation of DFT:

– notation,

∗ fn ≡ f [n],

∗ twiddle factor WN ≡ e2πi/N ;

– matrix representation;
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– dependence O(N2) of the number of operations required for the DFT
on the dimension N of the input string.

• Short mention on DFT of a nonperiodic function and windowing.

• Example: DFT of cos (2πft) with f = 2 · 1
NT in the case N = 8.

(12/11/2018) 11. Fast–Fourier–Transform (FFT) algorithm.

• Short summary of last lecture.

• Radix–2 decimation–in–time Fast–Fourier–Transform (FFT) algorithm:

– short history: Gauss 1805, Cooley and Tukey 1965;

– Danielson–Lanczos lemma (decimation, i.e. split);

– butterfly diagram (basic computational unit);

– element ordering via bit swapping.

• Dependence O(N logN) of the number of operations required for the FFT
on the dimension N of the input string.

• Examples of FFT in the case N = 8:

– FFT of cos (2πft) with f = 2 · 1
NT ;

– . . . proposed as a homework,

∗ generic sequence {f0, f1, . . . , f7}, and equivalence with the DFT,

∗ FFT of sin (2πft) with f = 2 · 1
NT ,

∗ FFT of a constant,

∗ FFT of δ[n],

∗ FFT of δ[n− 1],

∗ FFT of δ[n− 4].

(19/11/2018) 12. An introduction to information theory: Shannon
entropy of an ensamble.

• The basic issue: a definition of information, i.e., how it can be measured:

– Shannon’s approach (1948) with uncertainty;

– example of a sport match.

• Ensambles (Khinchin’s finite schemes) as triples made of. . . :

– random variable;

– alphabet of symbols, each corresponding to a realization of the r.v.;
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– probability distribution of the r.v.

• Shannon entropy of an ensamble:

– Shannon-Khinchin axioms;

– proof of uniqueness theorem;

– examples.

• Statement of Shannon’s source coding theorem:

– (uniquely decodable) binary symbol codes and compression;

– expected length ℓ(C,X) of a symbol code C encoding an ensamble
X ;

– compression issue: given an ensamble X , generate a symbol code C
that. . .

∗ is uniquely decodable, and

∗ minimizes the expected length ℓ(C,X);

– statement of Shannon’s source coding theorem.

• A mention of Shannon’s noisy channel coding theorem.

(26/11/2018) A1. An introduction to information theory: Shannon’s
source coding theorem for symbol codes; compression.
Additional lecture. Duration: 2h.

• Summary of lecture 12 (with emphasis on the concept of Shannon infor-
mation content of an outcome).

• Binary symbol codes and compression issue:

– definitions related to symbol codes,

∗ (binary) symbol code, codewords, length of codewords,

∗ extended code,

∗ uniquely decodable symbol code and prefix code,
a prefix code is uniquely decodable; the contrary is not true
(counterexample {1, 101}),
a prefix code is (generally) easy to decode,

∗ examples;

– expected length L(C,X) of a symbol code C encoding an ensamble
X ;

– compression issue: given an ensamble X , generate a symbol code C
that. . .

∗ is uniquely decodable,

∗ is easy to decode (so, possibly, a prefix code),
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∗ minimizes the expected lengt L(C,X);

– Kraft inequality in the case of unique decodeability,

∗ expression and proof,

∗ complete symbol code,

∗ given the size |AX | of an alphabet, existence of a complete, prefix
code encoding it (provable by construction).

• Convex functions and Jensen’s inequality:

– convex functions and strictly convex functions;

– Jensen’s inequality,

∗ proof of Jensen’s inequality,

∗ corollary: equality in the case of a strictly convex function.

• Kullback–Leibler divergence and Gibbs’ inequality:

– relative entropy, aka Kullback–Leibler divergence between two prob-
ability distributions;

– Gibbs’ inequality.

• Proof of Shannon’s source coding theorem for symbol codes.

• A mention of. . .

– Huffman lossless coding algorithm;

– Lempel–Ziv lossless compression algorithm (LZ77);

– (once more:) Shannon’s noisy channel coding theorem.
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LABORATORY CLASSES

(03/10/2018) L1. Introduction to Verilog programming on a FPGA
device. Counters and frequency dividers.

• Safety rules.

• Introductory exercise: design of a 1 Hz counter with 8–LED array display,
relying on standard analog and digital circuitry and a 8 Hz clock source.

• Basic hardware circuits:

– frequency divider;

– counter.

• A short overview on FPGA devices.

• Introduction to Verilog programming language:

– module architecture;

– example: development of a 8–bit, 1 Hz counter with an 8–LED array
display.

• Basic modules implementing basic hardware circuits:

– frequency divider;

– counter.

• Assigned exercises:

– development of a 8–bit, 1 Hz (or 10 Hz) counter with an 8–LED array
display;

– development of a 8–bit, 1 Hz (or 10 Hz) counter with a 2–digits BCD
coding and a 2 x 4–LED array display.

(10/10/2018) L2. Multiplexers and demultiplexers.

• Basic hardware circuits:

– multiplexer;

– demultiplexer.

• Hardware and software architectures:
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– combinatorial and sequential circuits;

– synchronous and asynchronous circuits.

• Verilog language:

– combinatorial (assign) and sequential (always) Verilog modules.

• A basic module implementing a basic hardware circuit:

– multiplexer.

• Assigned exercise:

– development of a chronometer from 0 to 99.99 s (1/100 s resolution),
with 2–digits BCD coding and a 2 x 4–LED array display.

(17/10/2018) L3. Synchronous counters. Toggle flip-flops. Monos-
table multivibrators.

• Risetime issue when clocking a flip-flop.

• Basic modules implementing basic hardware circuits:

– synchronous counter with set to a preset value, and reset;

– synchronous toggle flip-flop [*];

– synchronous monostable multivibrator [*];

– data latch.

[*] to be developed within the exercises.

• Assigned exercises:

– implementation of a synchronous module toggle flip-flop;

– implementation, by means of a toggle flip-flop, of a toggle pushbutton
to switch on/off an LED;

– observation of the bouncing effect in a pushbutton.

(24/10/2018) L4. Implementation of a chronometer with LCD display.

• Blocking and non–blocking assignments.

• Basic hardware circuits:

– peripheral device drivers.

• A basic driver module:

– LCD driver (with display of the lap mode).

• Assigned exercise:
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– final implementation of a chronometer with 1/100 s resolution, start/stop,
lap/reset function, and LCD display.

(31/10/2018) L5. Driving the DACs and the ADCs hosted on the
development board. Nyquist–Shannon sampling theorem made real.

• Solution to the exercise assigned in lab class L4:

– chronometer.

• Numerical representation of natural and integer numbers:

– 2’s complement representation of integers;

– inversion of an integer (−1) · n = (∼ n) + 1;

– sum, difference a − b = a + (−1) · b, multiplication a · b = |a| · |b| ·
sign(a) · sign(b);

– multiplication times 2k and division by 2k by means of the shift op-
erator;

– using the 2’s complement representation with ADC/DACs.

• Basic driver modules:

– driver of the ADCs placed on the development board;

– driver of the DACs placed on the development board.

• Assigned exercises:

– evaluation of the Nyquist frequency and the transfer function gain
(voltage-to-number-to-voltage) of a ADC-DAC feedthrough system;

– implementation of a delayer.

(07/11/2018) L6. Waveform generation.

• Solution to the exercise assigned in lab class L5:

– differentiator.

• A basic hardware circuit:

– shift register.

• A basic module implementing a basic hardware circuit:

– shift register.
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• Assigned exercise:

– implementation of sawtooth waveform generators.

(14/11/2018) L7. Implementation of a harmonic oscillator.

• Solution to the exercise assigned in lab class L6:

– pseudorandom number generator.

• Theoretical and experimental aspects linked to the development of a har-
monic oscillator:

– general discussion on the difficulty of implementing an oscillator;

– from the differential equation of a forced oscillator to the z–transform
of the simulator response function V (z);

– derivation of the difference equation;

– setting of the boundary conditions for the cosine operation;

– dependency of the working frequency f0 = ω0/(2π) on the parameter
k, provided that ω0T ≪ 1:
f0 = fs/(π2

k

2
+1), with fs = 1/T .

• Assigned exercise:

– implementation and characterization of a harmonic oscillator.

(21/11/2018) L8. Digital filters.

• Solution to the exercise assigned in lab class L7:

– implementation and characterization of a harmonic oscillator.

• Theory exercise: design of a first–order low–pass filter via bilinear trans-
form:

– from the Fourier transform of the real system’s response function to
the z–transform of the simulator’s response function V (z);

– difference equation and canonical direct form II (and transposed
DFII) of the simulator;

– implementation by using a pole placed at 1− 2−k;

– dependency of the cutoff frequency f3 dB = (2πτ)−1 on parameter k,
provided that ω0T ≪ 1;

– frequency behaviour via backward interpretation of the simulation
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theorem.

• Experimental exercises:

– implementation of a first–order low–pass filter;

– assessment of the transfer function (to be displayed via Bode–diagrams).

(05/12/2018) A2. Transmission lines.
Additional lecture/lab class. Duration: 4h. Location: Electronics EduLab.

• Theory of trasmission lines:

– useful constants,

∗ 4πǫ0 = 1
9
nF
m , µ0

4π = 102 nH
m ,

∗ 1√
ǫ0µ0

= c,
√

µ0

ǫ0
= Z0 ≃ 120πΩ;

– calculation of the distributed inductance, capacitance, resistance and
conductance in the case of a coaxial line (and mention of the case of
a twisted pair [“doppino”]);

– telegrapher’s equations and lossless case;

– wave equation for voltage and current in the lossless case;

– solution of the wave equation for voltage and current in the lossless
case;

– signal speed v and characteristic impedance Z;

– conditions of validity of the lossless case (R′ ≪ ωL′, G′ ≪ ωC′);

– reflection coefficient at a load resistance RL,

∗ derivation and . . .

∗ case RL = Z,

∗ case RL = 0,

∗ case RL = ∞;

– reflection on case of mismatch of transmission line characteristic
impedances;

– impedance of a line section of length ℓ terminated with a resistive
load RL,

∗ derivation and . . .

∗ case ℓ ≪ λ,

∗ case RL = 0 or RL = ∞ and a mention of stubs,

∗ case RL = Z;
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– a mention of half-wave dipole antenna and the value of Z = 75Ω.

– Z = 50Ω as an optimal value from the constructive point of view;

– low frequency impedance matching to maximize power transmis-
sion (optimal impedance–matching between generator internal out-
put impedance and load resistance).

• Experimental evidence of signal propagation within a 100 m long, RG58,
50 Ω coaxial cable:

– propagation speed;

– load resistance and reflection.

Suggested textbooks and references:

• A. V. Oppenheim, R. W. Schafer, “Digital Signal Processing”, Prentice
Hall;

• B. P. Lathi, “Signal Processing and Linear Systems”, Oxford University
Press;

• M. Hayes, “Schaums Outline of Digital Signal Processing”, Schaum’s Out-
lines.
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