Detailed SYLLABUS of the course

LABORATORY OF ADVANCED ELECTRONICS

Department of Physics, University of Trento, a.y. 2022-2023

Lecturers: LEONARDO RICCI, ALESSIO PERINELLI
(last updated on December 15, 2022)

LECTURES

(12/09/2022) 1. Introduction to the course. Signals and systems. Sequences.

- Signal processing:
- analog signal processing;
- digital signal processing (DSP).
- Noise (a very short review):
- Johnson noise;
- shot noise;
- quantum noise.
- Signals:
- a formal definition of signals (pictures included!);
- continuous signals;
- sequences (discrete-time signals).
- Sequences:
- graphical representation;
- remarkable sequences: impulse-sequence $\delta[n]$, step-sequence $u[n]$;
- delayed sequences, relation between $\delta[n]$ and $u[n]$;
- representation of a generic sequence by means of delayed impulsesequences;
- periodic sequences;
- energy of a sequence.
- Systems:
- a formal definition of systems.
(19/09/2022) 2. LTI systems. Basic properties of LTI systems. Difference equations.
- Linear, time-invariant (LTI) systems:
- action on a sequence;
- impulse-response (a.k.a. transfer function) $h[n]$, and convolution;
- a comment on the symmetry between input $x[n]$ and impulse-response $h[n]$: their roles can be swapped.
- Properties of an LTI system:
- reality;
- causality;
- marginal stability;
- bound-input, bound-output ("BIBO") stability,
* definition,
* necessary and sufficient condition for BIBO stability;
- examples $\left(h[n]=u[n], h[n]=a^{n} u[n]\right)$.
- Difference equations:
- similarity with the continuous case: a difference equation characterizes an LTI system;
- example,
* $h[n]$ in the case of $y[n]=x[n]+x[n-1]$,
* $h[n]$ in the case of $y[n]=a \cdot y[n-1]+b \cdot x[n]$.

(20/09/2022) 3. z-transform and its inversion.

- z-transform:
- a short discussion on the importance of changing space, in analogy with continuous systems, to solve difference equations;
- definition and region of convergence ("ROC");
- remarkable examples,

$$
\begin{aligned}
& * \delta[n], \\
& * u[n], \\
& *-u[-n-1] .
\end{aligned}
$$

- Basic properties of z-transform:
- linearity (important: beware of intersecting ROCs!);
- time-shift (important: beware of new ROC!);
- convolution theorem (important: beware of intersecting ROCs!).
- Complementary topics: graphical representation of systems:
- linear combinations of systems;
- cascade systems, and invertibility of two systems (proof via z-transform).
- Summary of residue calculus:
$-\frac{1}{2 \pi i} \oint_{\Gamma u m z_{o}}\left(z-z_{o}\right)^{n} d z=\delta_{n,-1} ;$
$-G(z)$ has an $n^{\text {th }}-$ order pole in $z_{o} \Longrightarrow$
$\frac{1}{2 \pi i} \oint_{\Gamma u m z_{o}} G(z) d z=\frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left[G(z)\left(z-z_{o}\right)^{n}\right]_{z=z_{o}}$.
- Inversion of the z-transform:
- derivation of the inversionexpression;
- examples,
* $X(z)=1$ with ROC \mathbb{C},
* $X(z)=\frac{z}{z-1}$ with ROC $|z|<1$,
* $X(z)=\frac{z}{z-1}$ with ROC $|z|>1 \mid$.
(27/09/2022) 4. Basic properties of LTI systems as seen in the $z-$ domain. Inversion of the z-transform: examples.
- Basic properties of systems as seen in the z-domain:
- reality,
* reality $\Leftrightarrow \bar{X}(\bar{z})=X(z)$,
* examples,
* existence of complex-conjugate zeroes and poles;
- causality,
* beware: causal $\neq \overline{\text { noncausal }}(k \cdot \delta[n] \ldots$ is both! $)$,
* $x[n]=0$ for $n<0$ (causal) $\Leftrightarrow 0 \notin \mathrm{ROC}, \infty \subset \mathrm{ROC}$ (implication \Leftarrow via Taylor series),
* $x[n]=0$ for $n>0$ (noncausal) $\Leftrightarrow 0 \in \mathrm{ROC}, \infty \not \subset \mathrm{ROC}$ (implication \Leftarrow via Taylor series),
* $x[n]=0$ for $n \neq 0$ (causual \& noncausal; $x[n]=k \cdot \delta[n] \ldots$) \Leftrightarrow $0 \in \mathrm{ROC}, \infty \subset \mathrm{ROC} \Leftrightarrow X(z)$ uniform on \mathbb{C} (the implication \Leftarrow corresponds to the Liouville theorem: a bounded holomorphic function whose ROC coincides with \mathbb{C} is uniform),
* examples;
- BIBO stability,
* BIBO stability $\Leftrightarrow \Gamma_{1} \subset$ ROC,
* examples.
- Remarkable examples concerning the inversion of the z-transform:
- basic example,
* evaluation of the z-transform of $a^{n} u[n],-a^{n} u[-n-1]$,
* $X(z)=\frac{z}{z-a}$ with ROC $|z|<|a|$,
* $X(z)=\frac{z}{z-a}$ with ROC $|z|>|a|$.
- remarkable examples,
* Fibonacci sequence,
* Poisson process and distribution;
(03/10/2022) 5. Nyquist-Shannon sampling theorem.
- Sampling:
- generation of a sequence $x[n]$ starting from a continuous signal $x_{a}(t)$: $x[n]=x_{a}(n T)$;
- basic issue: how good a continuous signal can be reconstructed from a sequence.
- Important definitions:
- sampling time/period T;
- sampling frequency/rate $f_{s}=\frac{1}{T}, \omega_{s}=\frac{2 \pi}{T}$;
- Nyquist frequency $f_{\mathrm{Ny}}=\frac{1}{2 T}=\frac{f_{s}}{2}, \omega_{\mathrm{Ny}}=\frac{\pi}{T}$;
- Nyquist band $\left(-\frac{\pi}{T}, \frac{\pi}{T}\right)$.
- Nyquist-Shannon sampling theorem:
- starting conditions:

1a) an analog, continuous signal $x_{a}(t)$ is L^{2} and $1 \mathrm{~b})$ its sampled sequence $x[n]$ BIBO stable;

- "Nyquist-Shannon precursor relation" between the \mathcal{F}-transform $\tilde{X}(\omega)$ of $x_{a}(t)$ and the z-transform $X(z)$ of $x[n]$: $X\left(e^{-i \omega T}\right)=\frac{1}{T} \sum_{\forall k} \tilde{X}\left(\omega+\frac{2 \pi}{T} k\right)$,
which is valid for $\omega \in\left(-\frac{\pi}{T}, \frac{\pi}{T}\right)$ and thus, because of periodicity, $\forall \omega$.
- final condition (the crucial one!):

2) the analog, continuous signal $x_{a}(t)$ is $\frac{\pi}{T}-\mathrm{BL}$ (band-limited);

- relation ("Nyquist-Shannon sampling theorem" in the frequency domain) between the \mathcal{F}-transform $\tilde{X}(\omega)$ of $x_{a}(t)$ and the z-transform $X(z)$ of $x[n]$:
if $\omega \in\left(-\frac{\pi}{T}, \frac{\pi}{T}\right)$ then $\tilde{X}(\omega)=\sum_{\forall k} \tilde{X}\left(\omega+\frac{2 \pi}{T} k\right)$, and thus, because of the precursor relation,
$\tilde{X}(\omega)=T X\left(e^{-i \omega T}\right)$ if $\omega \in\left(-\frac{\pi}{T}, \frac{\pi}{T}\right) ;$
-"Nyquist-Shannon sampling theorem" in the time domain:

$$
x_{a}(t)=\sum_{\forall k} x[k] \operatorname{sinc}\left[(t-k T) \frac{\pi}{T}\right] .
$$

- Summary:

1. additional, useful definitions,

- let $\tilde{X}_{\text {folding }}(\omega)$ be defined as
$\tilde{X}_{\text {folding }}(\omega) \equiv \sum_{\forall k} \tilde{X}\left(\omega+\frac{2 \pi}{T} k\right)$, and
- let the reconstruction $x_{r e c}(t)$ be defined as $x_{r e c}(t) \equiv \sum_{\forall k} x[k] \operatorname{sinc}\left[(t-k T) \frac{\pi}{T}\right] ;$

2. under the conditions 1a) $x_{a}(t) \in L^{2}$ and 1b) $x[n]$ BIBO stable, one has the "Nyquist-Shannon precursor relation": $T X\left(e^{-i \omega T}\right)=\tilde{X}_{\text {folding }}(\omega)$;
3. under the additional condition 2) $x_{a}(t)$ is $\frac{\pi}{T}-\mathrm{BL}$, one has...

- the "Nyquist-Shannon sampling theorem" in the frequency domain:
$\tilde{X}(\omega)=T X\left(e^{-i \omega T}\right)$ if $\omega \in\left(-\frac{\pi}{T}, \frac{\pi}{T}\right)$,
- "Nyquist-Shannon sampling theorem" in the time domain: $x_{r e c}(t)=x_{a}(t)$.
- Aliasing in the case of a non $-\frac{\pi}{T}-$ BL signal $x_{a}(t)$:
- additional definitions,
* $W(\omega) \equiv\left[\theta\left(\omega+\frac{\pi}{T}\right)-\theta\left(\omega-\frac{\pi}{T}\right)\right]\left(\frac{\pi}{T}-\right.$ window $)$,
* $\tilde{X}_{\text {alias }}(\omega) \equiv \tilde{X}_{\text {folding }}(\omega) \cdot W(\omega)$;
- inverse Fourier transform of $\tilde{X}_{\text {alias }}(\omega)$,
a: $\tilde{X}_{\text {alias }}(\omega)$ is $\frac{\pi}{T}-\mathrm{BL}$,
b: $\sum_{\forall k} \tilde{X}_{\text {alias }}\left(\omega+\frac{2 \pi}{T} k\right)=\tilde{X}_{\text {folding }}(\omega)$
(proof via definition of $\tilde{X}_{\text {alias }}(\omega)$ and periodicity of $\tilde{X}_{\text {folding }}(\omega)$),
$\mathrm{a}, \mathrm{b} \Rightarrow \mathrm{c}:$ if $\omega \in\left(-\frac{\pi}{T}, \frac{\pi}{T}\right)$, then

$$
\tilde{X}_{\text {alias }}(\omega)=\tilde{X}_{\text {folding }}(\omega)=T X\left(e^{-i \omega T}\right)
$$

$\mathrm{c} \Rightarrow \mathrm{d}: \mathcal{F}^{-1}\left[\tilde{X}_{\text {alias }}(\omega)\right]=x_{r e c}(t) ;$

- aliasing:
if $x_{a}(t)$ is not $\frac{\pi}{T}-\mathrm{BL}$, then
$\tilde{X}_{\text {alias }}(\omega)=\tilde{\tilde{X}}_{\text {folding }}(\omega) \cdot W(\omega) \neq \tilde{X}(\omega)$, and, by evaluating the inverse Fourier transform,
$x_{r e c}(t) \neq x_{a}(t)$, i.e. $x_{r e c}(t)$ is not equal to $x_{a}(t)$ but it is something else (\sim latin alias);
- nevertheless: $x_{r e c}[n]=x_{a}(n T)=x[n]$.
- Practical statement of Nyquist-Shannon sampling theorem: if f_{0} is the maximum frequency occurring in a signal, use a sampling frequency f_{s}
such that $f_{s}>2 f_{0}$.
- Remarkable example: aliasing in the case of sinusoidal and cosinusoidal signals.

(10/10/2022)
 6. Simulation of an analog system by means of a digital

 one.- Theorem concerning the simulation of an analog system by means of a digital one ("simulation theorem"):
- general discussion;
- proof assuming...
* 1a) Fourier-transformable input signals and transfer function, i.e. $x(t), G(t) \in L^{2}$,
* 1b) BIBO-stable simulator $h[n]$,
* 2) $\frac{\pi}{T}$-BL input signals;
- expression of the ideal transfer function $h[n]$ of the simulator.
- Implementation issues:
- reality: $G(t)$ is real $\Rightarrow h[n]$ is real;
- stability of the ideal transfer function $h[n]$, to be assessed case by case, and ...
- non-causality issue for the ideal transfer function $h[n]$ (example: first-order low-pass filter);
- difficulty - in the general case - of calculating $h[n]$ (example: firstorder low-pass filter);
- a remarkable example: digital differentiator (ideal solution $\propto(1-$ $\delta[n])\left(\frac{(-1)^{n}}{n}\right)$.
- "Backward interpretation of the simulation theorem":
- statement: any digital system characterized by an impulse sequence $v[n]$-and the related z-transform $V(z)$-is a perfect simulator of an analog system whose impulse response's Fourier transform $\tilde{V}(\omega)$ is given by $V\left(e^{-i \omega T}\right)$.
- Approximated simulation via "backward interpretation of the simulation theorem":
- an approach to overcome the implementation issues: requiring the simulator's output $y^{\prime}[n]$ to approximate the sampled analog output $y[n], y^{\prime}[n] \cong y[n]$, rather than imposing $h[n]=g[n]$.
So, because it is mostly impossible to find $H(z)$, and thus $h[n]$, such that it exactly simulates a given $\tilde{G}(\omega)$,
find an implementable $V(z)$, and thus $v[n]$, such that its Fouriertransform equivalent function $V\left(e^{-i \omega T}\right)$ suitably approximates $\tilde{G}(\omega)$;
- (approximation of an ideal system $h[n], H(z)$ through a real one $v[n], V(z)$ via, ex. gr., minimization of the Tchebycheff error or the root-mean-square error;)
- a remarkable example: digital differentiator,
* solution $\delta[n]-\delta[n-1]$,
* solution via a non recursive (FIR) filter based on delays up to 2 periods;
- a remarkable example: low pass filter,
* solution via a recursive (IIR) filter $y[n]=a \cdot y[n-1]+b \cdot x[n]$.
(17/10/2022)

7. Bilinear transform.

- Bilinear transform:
- an issue: how to express ω, or s, in terms of z by relying on $z=e^{-i \omega T}$ and exploiting the approximation approach to simulation provided by the backward interpretation of the simulation theorem;
- bilinear transform statement $\omega \rightarrow \frac{2 i}{T} \frac{z-1}{z+1}, s \rightarrow \frac{2}{T} \frac{z-1}{z+1}$
$\Longrightarrow V(z)=\tilde{H}\left(\omega=\frac{2 i}{T} \frac{z-1}{z+1}\right) ; V(z)=\tilde{H}_{\text {Laplace }}\left(s=\frac{2}{T} \frac{z-1}{z+1}\right)$;
- desirable frequency behaviour for $T \ll$ bandOf Interest ${ }^{-1}$.
- Simulation via bilinear transform of an LTI system characterized by a rational transfer function:
- basic properties,
* reality $\left(h(t)\right.$ is real $\left.\Longleftrightarrow \tilde{H}^{*}(\omega)=\tilde{H}(-\omega)\right)$,
* causality (to be imposed),
* BIBO-stability, $h(t)$ is $\tilde{\sim}^{\text {BIBO-stable }} \Leftrightarrow$ stable system with rational transfer function $\tilde{H}(s)$,

$$
\begin{aligned}
& \cdot s \rightarrow \frac{2}{T} \frac{z-1}{z+1} \Longleftrightarrow \quad \Longleftrightarrow \rightarrow \frac{s T / 2+1}{s T / 2-1}, \\
& \cdot \Longrightarrow \operatorname{Re} s<0 \leftrightarrow|z|<1
\end{aligned}
$$

- in the case of systems characterized by rational transfer functions $\tilde{H}(\omega)=N(\omega) / D(\omega)$, with degree $[N(\omega)]<\operatorname{degree}[D(\omega)]$, superiority of bilinear transform with respect to other transforms (for example the one in which $\tan (\omega T / 2)$ is replaced by $\sin (\omega T))$,
due to a desirable behaviour in the neighbourhood of the Nyquist frequency
- Example (short overview):
- low-pass filter simulator via bilinear transform;
- implementation via a difference equation;
- frequency response.
(24/10/2022) 8 Filter design: examples.
- Example: design of a first-order low-pass filter via bilinear transform:
- derivation of $V(z)$ via bilinear transform;
- basic properties,
* reality,
* causality (to be imposed),
* BIBO-stability;
- desirable behaviour in the neighbourhood of the Nyquist frequency;
- implementation via a difference equation;
- transfer function $\tilde{V}(\omega)$ via "backward interpretation of the simulation theorem".
- Structure of a filter implementing a rational function in the z-domain:
- effect of zeroes and poles on $\tilde{V}(\omega)$;
- example: design of a notch filter at $f=f_{\text {Nyquist }} / 2=f_{\text {sampling }} / 4$:
* positioning of zeroes and poles, by taking into account reality, causality, BIBO-stability,
* final expression for $V(z)$,
* frequency response $\tilde{V}(\omega)$,
* inversion of z-transform $V(z)$ and practical implementation (left as a homework).

(07/11/2022) 9. Discrete-Fourier-Transform (DFT).

- Discrete-Fourier-Transform (DFT):
- assumption of the periodicity of $x_{a}(t)$, with period $N T, N \in \mathbb{N}^{+}$and calculation of the coefficients of the Fourier series;
- assumption of the $\frac{\pi}{T}$-band-limitedness of $x_{a}(t)$;
- (assumption of N being a power of 2);
- derivation of DFT and relation with the Fourier series coefficients;
- inversion, periodicity, Parseval's theorem.
- Matrix representation of DFT:
- notation,

$$
* f_{n} \equiv f[n]
$$

* twiddle factor $W_{N} \equiv e^{2 \pi i / N}$;
- matrix representation;
- dependence $O\left(N^{2}\right)$ of the number of operations required for the DFT on the dimension N of the input string.
- Example: DFT of $\cos (2 \pi f t)$ with $f=2 \cdot \frac{1}{N T}$ in the case $N=8$.
(14/11/2022) 10. Fast-Fourier-Transform (FFT).
- A summary of last lecture.
- Radix-2 decimation-in-time Fast-Fourier-Transform (FFT) algorithm:
- short history: Gauss 1805, Cooley and Tukey 1965;
- Danielson-Lanczos lemma (decimation, i.e. split);
- butterfly diagram (basic computational unit);
- element ordering via bit swapping.
- Dependence $O(N \log N)$ of the number of operations required for the FFT on the dimension N of the input string.
- A short mention on DFT (and FFT) of a nonperiodic function and windowing.
- Examples of FFT in the case $N=8$:
- FFT of $\cos (2 \pi f t)$ with $f=2 \cdot \frac{1}{N T}$;
- FFT of $\delta[n-3]$;
- . . proposed as a homework,
* generic sequence $\left\{f_{0}, f_{1}, \ldots, f_{7}\right\}$, and equivalence with the DFT ,
* FFT of $\sin (2 \pi f t)$ with $f=2 \cdot \frac{1}{N T}$,
* FFT of a constant,
* FFT of $\delta[n]$,
* FFT of $\delta[n-4]$.
(21/11/2022) 11. An introduction to information theory: Shannon entropy of an ensamble.
- The basic issue: a definition of information, i.e., how it can be measured:
- Shannon's approach (1948) with uncertainty;
- example of a sport match.
- Ensambles (Khinchin's finite schemes; "Experiment") as triples made of. . . :
- random variable;
- alphabet of symbols (or vocabulary of words), each corresponding to a realization of the r.v.;
- probability distribution of the r.v.
- Shannon entropy of an ensamble:
- Shannon-Khinchin axioms;
- proof of uniqueness theorem;
- examples,
* Bernoulli trial,
* Battleship (game).
(25/11/2022) 12. An introduction to information theory: Shannon's source coding theorem for symbol codes; compression.
(3 hours)
- A summary of last lecture.
- Kullback-Leibler divergence and Gibbs' inequality:
- relative entropy, aka Kullback-Leibler divergence between two probability distributions;
- Gibbs' inequality.
- Binary symbol codes and compression issue:
- definitions related to symbol codes,
* (binary) symbol code, codewords, length of codewords,
* extended code,
* uniquely decodable symbol code and prefix code,
a prefix code is uniquely decodable; the contrary is not true (counterexample $\{1,101\}$),
a prefix code is (generally) easy to decode,
* examples;
- expected length $L(C, X)$ of a symbol code C that encodes an ensamble X;
- compression issue: given an ensamble X, generation of a symbol code C that...
* (compulsory) is uniquely decodable,
* (desirable) is easy to decode (so, possibly, a prefix code),
* (compulsory) minimizes the expected length $L(C, X)$;
- Kraft inequality in the case of unique decodeability,
* expression and proof,
* definition of a complete symbol code,
* given the size $\left|A_{X}\right|$ of an alphabet, existence of a complete, prefix code that encodes it (provable by construction).
- Shannon's source coding theorem for symbol codes.
- Huffman lossless coding algorithm:
- algorithm;
- example;
- properties,
* Huffman algorithm generates prefix symbol codes (provable by construction),
* Huffman is complete (provable by construction),
* Huffman coding is optimal (statement only),
* (a "con" indeed:) necessity of knowing $p(x)$ in advance;
- compression improvement via "syllables".
- Lempel-Ziv lossless compression algorithm (LZ77):
- algorithm;
- example.
- A mention of lossy compression algorithms.

LABORATORY CLASSES

(13/09/2022) L1. Introduction to Verilog programming on a FPGA device. Counters and frequency dividers.

- Safety rules.
- A short overview on FPGA devices and on HDL programming languages.
- Introductory problem: design of a 1 Hz counter with 8-LED array display, relying on standard analog and digital circuitry and an 8 Hz clock source.
- Basic hardware circuits:
- frequency divider;
- counter.
- Verilog programming language:
- module architecture;
- template example: development of an 8 -bit, 1 Hz counter with an 8 -LED array display, working from 0 to 255 ;
- basic modules implementing basic hardware circuits:
* frequency divider;
* counter.
- Problems:
- development of an 8-bit, 1 Hz counter with an 8-LED array display, working from 0 to 9 ;
- development of an 8-bit, 10 Hz counter with an 8-LED array display, working from 0 to 9 .
- development of a 10 Hz counter, working from 0 to 99 , with a 2 -digits BCD coding and a 2×4-LED array display;
- Additional problems:
- development of a 10 Hz down counter.
(14/09/2022) L2. Multiplexers and demultiplexers. Synchronous counters.
- Solutions to the problems assigned in the previous lab class.
- Hardware and software architectures:
- combinatorial and sequential circuits;
- synchronous and asynchronous circuits;
- example: asynchronous counter and synchronous version by means of a finite-state machine.
- Risetime issue when clocking a flip-flop.
- Basic hardware circuits:
- multiplexer;
- demultiplexer.
- Verilog programming language:
- combinatorial (assign) and sequential (always) Verilog modules;
- Problems:
- development of a stopwatch from 0 to $99.99 \mathrm{~s}(1 / 100 \mathrm{~s}$ resolution), with 2-digits BCD coding and a 2×4-LED array display;
- development of a syncronous counter based on a"master clock".
(15/09/2022) L3. Toggle flip-flops. Monostable multivibrators.
- Solutions to the problems assigned in the previous lab class.
- Verilog programming language:
- basic modules implementing basic hardware circuits:
* multiplexer (synchronous and asynchronous version);
* synchronous counter with set to a preset value, and reset.
- basic modules implementing basic hardware circuits:
* synchronous toggle flip-flop [*];
* synchronous monostable multivibrator [*].
$[*]$ to be developed within the problems.
- Problems:
- implementation of a synchronous module toggle flip-flop and, through this, of a toggle pushbutton to switch on/off an LED;
- implementation of a synchronous module monostable multivibra-
tor and, through this, of an improved toggle pushbutton to switch on/off an LED; observation of the bouncing effect in a pushbutton;
- implementation, by means of a monostable multivibrator and an improved toggle pushbutton, of a timer to switch on an LED for a given time (programmable through the switches).
(30/09/2022) L4. Implementation of a stopwatch with OLED display.
- Finite-state machines.
- Basic hardware circuits:
- data latches.
- Verilog programming language:
- peripheral device drivers (ex.gr.: OLED driver with display of the lap mode).
- Problems:
- implementation of a synchronous 5-state finite-state machine with two pulse control;
- final implementation of a stopwatch with $1 / 100$ s resolution, start/stop, lap/reset function, and OLED display.

(12/10/2022) L5. Development of drivers for hardware devices.

- Numerical representation of natural and integer numbers:
- 2's complement representation of integers;
- inversion of an integer $(-1) \cdot n=(\sim n)+1$;
- sum, difference $a-b=a+(-1) \cdot b$, multiplication $a \cdot b=|a| \cdot|b|$. $\operatorname{sign}(a) \cdot \operatorname{sign}(b)$;
- multiplication times 2^{k} and division by 2^{k} by means of the shift operator;
- using the 2's complement representation with ADC/DACs.
- Verilog programming language:
- handling signed numbers.
- Problems:
- implementation of an RGB driver to control a variable-color LED;
- implementation of an $R G B$ simplex.
(26/10/2022) L6. Nyquist-Shannon sampling theorem made real. Waveform generation.
- Using the 2's complement representation with ADC/DACs.
- Basic hardware circuits:
- shift register.
- Verilog programming language:
- driver of the ADCs placed on the development board;
- driver of the DACs placed on the development board;
- shift register.
- Problems:
- evaluation of the Nyquist frequency and the transfer function gain (voltage-to-number-to-voltage) of a ADC-DAC feedthrough system;
- implementation of a delayer;
- implementation of sawtooth waveform generators.
(09/11/2022) L7. Implementation of a harmonic oscillator.
- Theoretical and experimental aspects linked to the development of a harmonic oscillator:
- general discussion on the difficulty of implementing an oscillator;
- from the differential equation of a forced oscillator to the z-transform of the simulator response function $V(z)$;
- derivation of the difference equation;
- setting of the boundary conditions for the cosine operation;
- dependency of the working frequency $f_{0}=\omega_{0} /(2 \pi)$ on the parameter k, provided that $\omega_{0} T \ll 1$:

$$
f_{0}=f_{s} /\left(\pi 2^{\frac{k}{2}+1}\right), \text { with } f_{s}=1 / T
$$

- Practical demonstration of FFT windowing.
- Problems:
- implementation and characterization of a harmonic oscillator.
(23/11/2022) L8. Digital simulation of analog filters.
- A short mention to the solutions to the problems assigned in the lab classes L4, L5, L6, L7.
- A summary on Bode diagrams (and on frequency roll-off in filters).
- Theory problem: design of a first-order low-pass filter via bilinear transform:
- from the Fourier transform of the real system's response function to the z-transform of the simulator's response function $V(z)$;
- difference equation and block diagram of the simulator;
- implementation by using a pole placed at $1-2^{-k}$;
- dependency of the cutoff frequency $f_{3 \mathrm{~dB}}=(2 \pi \tau)^{-1}$ on parameter k, provided that $\omega_{0} T \ll 1$;
- frequency behaviour via "backward interpretation of the simulation theorem".
- Problems:
- implementation of a first-order low-pass filter;
- assessment of the transfer function (to be displayed via Bode-diagrams).

