Detailed SYLLABUS of the course

LABORATORY OF ADVANCED ELECTRONICS

Department of Physics, University of Trento, a.y. 2022-2023

Lecturers: LEONARDO RICCI, ALESSIO PERINELLI

(last updated on December 15, 2022)

LECTURES

 $(12/09/2022)\quad 1.$ Introduction to the course. Signals and systems. Sequences.

- Signal processing:
 - analog signal processing;
 - digital signal processing (DSP).
- Noise (a very short review):
 - Johnson noise;
 - shot noise;
 - quantum noise.
- Signals:
 - a formal definition of signals (pictures included!);
 - continuous signals;
 - sequences (discrete-time signals).
- Sequences:
 - graphical representation;
 - remarkable sequences: impulse-sequence $\delta[n]$, step-sequence u[n];
 - delayed sequences, relation between $\delta[n]$ and u[n];
 - representation of a generic sequence by means of delayed impulsesequences;
 - periodic sequences;
 - energy of a sequence.
- Systems:
 - a formal definition of systems.

 $(19/09/2022)\ 2.$ LTI systems. Basic properties of LTI systems. Difference equations.

- Linear, time-invariant (LTI) systems:
 - action on a sequence;
 - impulse-response (a.k.a. transfer function) h[n], and convolution;
 - a comment on the symmetry between input x[n] and impulse–response h[n]: their roles can be swapped.
- Properties of an LTI system:
 - reality;
 - causality;
 - marginal stability;
 - bound-input, bound-output ("BIBO") stability,
 - $\ast\,$ definition,
 - * necessary and sufficient condition for BIBO stability;
 - examples $(h[n] = u[n], h[n] = a^n u[n]).$
- Difference equations:
 - similarity with the continuous case: a difference equation characterizes an LTI system;
 - example,
 - * h[n] in the case of y[n] = x[n] + x[n-1],
 - * h[n] in the case of $y[n] = a \cdot y[n-1] + b \cdot x[n]$.

(20/09/2022) 3. z-transform and its inversion.

- z-transform:
 - a short discussion on the importance of changing space, in analogy with continuous systems, to solve difference equations;
 - definition and region of convergence ("ROC");
 - remarkable examples,
 - * $\delta[n]$,
 - * u[n],
 - * -u[-n-1].
- Basic properties of *z*-transform:
 - linearity (important: beware of intersecting ROCs!);
 - time-shift (important: beware of new ROC!);
 - convolution theorem (important: beware of intersecting ROCs!).
- Complementary topics: graphical representation of systems:

- linear combinations of systems;
- cascade systems, and invertibility of two systems (proof via z-transform).
- Summary of residue calculus:
 - $-\frac{1}{2\pi i}\oint_{\Gamma} um z_{o}(z-z_{o})^{n}dz = \delta_{n, -1};$ $- G(z) \text{ has an } n^{\text{th}}\text{-order pole in } z_o \Longrightarrow$ $\frac{1}{2\pi i} \oint_{\Gamma um z_o} G(z) dz = \frac{1}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} [G(z)(z-z_o)^n]_{z=z_o}.$
- Inversion of the *z*-transform:
 - derivation of the inversion expression;
 - examples,
 - * X(z) = 1 with ROC \mathbb{C} ,
 - * $X(z) = \frac{z}{z-1}$ with ROC |z| < 1, * $X(z) = \frac{z}{z-1}$ with ROC |z| > 1|.

(27/09/2022) 4. Basic properties of LTI systems as seen in the zdomain. Inversion of the *z*-transform: examples.

- Basic properties of systems as seen in the z-domain:
 - reality.
 - * reality $\Leftrightarrow \overline{X}(\overline{z}) = X(z),$
 - * examples,
 - * existence of complex-conjugate zeroes and poles;
 - causality,
 - * beware: causal $\neq \overline{\text{noncausal}} (k \cdot \delta[n] \dots \text{ is both!}),$
 - * x[n] = 0 for n < 0 (causal) $\Leftrightarrow 0 \notin \text{ROC}, \infty \subset \text{ROC}$ (implication \Leftarrow via Taylor series),
 - * x[n] = 0 for n > 0 (noncausal) $\Leftrightarrow 0 \in \text{ROC}, \infty \not\subset \text{ROC}$ (implication \Leftarrow via Taylor series),
 - * x[n] = 0 for $n \neq 0$ (causual & noncausal; $x[n] = k \cdot \delta[n] \dots$) \Leftrightarrow $0 \in \text{ROC}, \infty \subset \text{ROC} \Leftrightarrow X(z)$ uniform on \mathbb{C} (the implication \Leftarrow corresponds to the Liouville theorem: a bounded holomorphic function whose ROC coincides with \mathbb{C} is uniform),
 - * examples;
 - BIBO stability,
 - * BIBO stability $\Leftrightarrow \Gamma_1 \subset \text{ROC}$,
 - * examples.
- Remarkable examples concerning the inversion of the z-transform:

- basic example,
 - * evaluation of the z-transform of $a^n u[n], -a^n u[-n-1],$
 - $\begin{array}{l} * \ X(z) = \frac{z}{z-a} \ \text{with ROC} \ |z| < |a|, \\ * \ X(z) = \frac{z}{z-a} \ \text{with ROC} \ |z| > |a|. \end{array}$
- remarkable examples,
 - * Fibonacci sequence,
 - * Poisson process and distribution;

(03/10/2022) 5. Nyquist-Shannon sampling theorem.

- Sampling:
 - generation of a sequence x[n] starting from a continuous signal $x_a(t)$: $x[n] = x_a(nT);$
 - basic issue: how good a continuous signal can be reconstructed from a sequence.
- Important definitions:
 - sampling time/period T;
 - sampling frequency/rate $f_s = \frac{1}{T}, \, \omega_s = \frac{2\pi}{T};$
 - Nyquist frequency $f_{\rm Ny} = \frac{1}{2T} = \frac{f_s}{2}, \ \omega_{\rm Ny} = \frac{\pi}{T};$
 - Nyquist band $\left(-\frac{\pi}{T}, \frac{\pi}{T}\right)$.
- Nyquist–Shannon sampling theorem:
 - starting conditions:
 - 1a) an analog, continuous signal $x_a(t)$ is L^2 and
 - 1b) its sampled sequence x[n] BIBO stable;
 - "Nyquist-Shannon precursor relation" between the \mathcal{F} -transform $\tilde{X}(\omega)$ of $x_a(t)$ and the z-transform X(z) of x[n]: $X\left(e^{-i\omega T}\right) = \frac{1}{T} \sum_{\forall k} \tilde{X}(\omega + \frac{2\pi}{T}k),$ which is valid for $\omega \in \left(-\frac{\pi}{T}, \frac{\pi}{T}\right)$ and thus, because of periodicity, $\forall \omega$.
 - final condition (the crucial one!):
 - 2) the analog, continuous signal $x_a(t)$ is $\frac{\pi}{T}$ -BL (band-limited);
 - relation ("Nyquist-Shannon sampling theorem" in the frequency domain) between the \mathcal{F} -transform $\tilde{X}(\omega)$ of $x_a(t)$ and the z-transform X(z) of x[n]:

if $\omega \in \left(-\frac{\pi}{T}, \frac{\pi}{T}\right)$ then $\tilde{X}(\omega) = \sum_{\forall k} \tilde{X}(\omega + \frac{2\pi}{T}k)$, and thus, because of the precursor relation, $\tilde{X}(\omega) = TX\left(e^{-i\omega T}\right)$ if $\omega \in \left(-\frac{\pi}{T}, \frac{\pi}{T}\right)$;

- "Nyquist-Shannon sampling theorem" in the time domain:

$$x_a(t) = \sum_{\forall k} x[k] \operatorname{sinc} \left[(t - kT) \frac{\pi}{T} \right].$$

- Summary:
 - 1. additional, useful definitions,
 - let $\tilde{X}_{folding}(\omega)$ be defined as $\tilde{X}_{folding}(\omega) \equiv \sum_{\forall k} \tilde{X}(\omega + \frac{2\pi}{T}k)$, and
 - let the reconstruction $x_{rec}(t)$ be defined as
 - $x_{rec}(t) \equiv \sum_{\forall k} x[k] \operatorname{sinc}\left[(t kT) \frac{\pi}{T} \right];$
 - 2. under the conditions 1a) $x_a(t) \in L^2$ and 1b) x[n] BIBO stable, one has the "Nyquist-Shannon precursor relation": $TX(e^{-i\omega T}) = \tilde{X}_{folding}(\omega);$
 - 3. under the additional condition 2) $x_a(t)$ is $\frac{\pi}{T}$ -BL, one has...
 - the "Nyquist-Shannon sampling theorem" in the frequency domain:
 - $\tilde{X}(\omega) = TX\left(e^{-i\omega T}\right)$ if $\omega \in \left(-\frac{\pi}{T}, \frac{\pi}{T}\right)$,
 - "Nyquist-Shannon sampling theorem" in the time domain: $x_{rec}(t) = x_a(t)$.
- Aliasing in the case of a non- $\frac{\pi}{T}$ -BL signal $x_a(t)$:
 - additional definitions,
 - * $W(\omega) \equiv \left[\theta(\omega + \frac{\pi}{T}) \theta(\omega \frac{\pi}{T})\right] \left(\frac{\pi}{T} \text{window}\right),$
 - * $\tilde{X}_{alias}(\omega) \equiv \tilde{X}_{folding}(\omega) \cdot W(\omega);$
 - inverse Fourier transform of $\tilde{X}_{alias}(\omega)$,
 - a: $\tilde{X}_{alias}(\omega)$ is $\frac{\pi}{T}$ -BL,
 - b: $\sum_{\forall k} \tilde{X}_{alias}(\omega + \frac{2\pi}{T}k) = \tilde{X}_{folding}(\omega)$

(proof via definition of $\tilde{X}_{alias}(\omega)$ and periodicity of $\tilde{X}_{folding}(\omega)$),

a, b \Rightarrow c: if $\omega \in \left(-\frac{\pi}{T}, \frac{\pi}{T}\right)$, then

$$\begin{split} \tilde{X}_{alias}(\omega) &= \tilde{X}_{folding}(\omega) = TX\left(e^{-i\omega T}\right),\\ \mathbf{c} \Rightarrow \mathbf{d}: \ \mathcal{F}^{-1}\left[\tilde{X}_{alias}(\omega)\right] &= x_{rec}(t); \end{split}$$

– aliasing:

if $x_a(t)$ is not $\frac{\pi}{T}$ -BL, then

 $\tilde{X}_{alias}(\omega) = \tilde{X}_{folding}(\omega) \cdot W(\omega) \neq \tilde{X}(\omega)$, and, by evaluating the inverse Fourier transform,

 $x_{rec}(t) \neq x_a(t)$, i.e. $x_{rec}(t)$ is not equal to $x_a(t)$ but it is something else (~ latin alias);

- nevertheless: $x_{rec}[n] = x_a(nT) = x[n]$.

• Practical statement of Nyquist–Shannon sampling theorem: if f_0 is the maximum frequency occurring in a signal, use a sampling frequency f_s

such that $f_s > 2f_0$.

• Remarkable example: aliasing in the case of sinusoidal and cosinusoidal signals.

$\left(10/10/2022\right)~6.~$ Simulation of an analog system by means of a digital one.

- Theorem concerning the simulation of an analog system by means of a digital one ("simulation theorem"):
 - general discussion;
 - proof assuming...
 - * 1a) Fourier-transformable input signals and transfer function, i.e. $x(t), G(t) \in L^2$,
 - * 1b) BIBO-stable simulator h[n],
 - * 2) $\frac{\pi}{T}$ -BL input signals;
 - expression of the ideal transfer function h[n] of the simulator.
- Implementation issues:
 - reality: G(t) is real $\Rightarrow h[n]$ is real;
 - stability of the ideal transfer function h[n], to be assessed case by case, and . . .
 - non-causality issue for the ideal transfer function h[n] (example: first-order low-pass filter);
 - difficulty in the general case of calculating h[n] (example: first-order low-pass filter);
 - a remarkable example: digital differentiator (ideal solution $\propto (1 \delta[n]) \frac{(-1)^n}{n}$).
- "Backward interpretation of the simulation theorem":
 - statement: any digital system characterized by an impulse sequence v[n]—and the related z-transform V(z)—is a perfect simulator of an analog system whose impulse response's Fourier transform $\tilde{V}(\omega)$ is given by $V(e^{-i\omega T})$.
- Approximated simulation via "backward interpretation of the simulation theorem":
 - an approach to overcome the implementation issues: requiring the simulator's output y'[n] to approximate the sampled analog output $y[n], y'[n] \cong y[n]$, rather than imposing h[n] = g[n].

So, because it is mostly impossible to find H(z), and thus h[n], such that it exactly simulates a given $\tilde{G}(\omega)$,

find an implementable V(z), and thus v[n], such that its Fouriertransform equivalent function $V(e^{-i\omega T})$ suitably approximates $\tilde{G}(\omega)$;

- (approximation of an ideal system h[n], H(z) through a real one v[n], V(z) via, ex. gr., minimization of the Tchebycheff error or the root-mean-square error;)
- a remarkable example: digital differentiator,
 - * solution $\delta[n] \delta[n-1]$,
 - $\ast\,$ solution via a non recursive (FIR) filter based on delays up to 2 periods;
- a remarkable example: low pass filter,
 - * solution via a recursive (IIR) filter $y[n] = a \cdot y[n-1] + b \cdot x[n]$.

(17/10/2022) 7. Bilinear transform.

- Bilinear transform:
 - an issue: how to express ω , or s, in terms of z by relying on $z = e^{-i\omega T}$ and exploiting the approximation approach to simulation provided by the backward interpretation of the simulation theorem;

bilinear transform statement
$$\omega \to \frac{2i}{T} \frac{z-1}{z+1}, s \to \frac{2}{T} \frac{z-1}{z+1}$$

 $\implies V(z) = \tilde{H}\left(\omega = \frac{2i}{T} \frac{z-1}{z+1}\right); V(z) = \tilde{H}_{\text{Laplace}}\left(s = \frac{2}{T} \frac{z-1}{z+1}\right);$

- desirable frequency behaviour for $T \ll bandOfInterest^{-1}$.
- Simulation via bilinear transform of an LTI system characterized by a rational transfer function:
 - basic properties,
 - * reality $(h(t) \text{ is real } \iff \tilde{H}^*(\omega) = \tilde{H}(-\omega)),$
 - * causality (to be imposed),
 - * BIBO–stability, h(t) is BIBO–stable \Leftrightarrow stable system with rational transfer function $\tilde{H}(s)$,

$$\begin{array}{ccc} s \rightarrow \frac{2}{T} \frac{z-1}{z+1} & \Longleftrightarrow & z \rightarrow \frac{sT/2+1}{sT/2-1}, \\ r \implies & \operatorname{Re} s < 0 \leftrightarrow |z| < 1; \end{array}$$

- in the case of systems characterized by rational transfer functions $\tilde{H}(\omega) = N(\omega)/D(\omega)$, with degree $[N(\omega)] < \text{degree}[D(\omega)]$,

superiority of bilinear transform with respect to other transforms (for example the one in which $\tan(\omega T/2)$ is replaced by $\sin(\omega T)$), due to a desirable behaviour in the neighbourhood of the Nyquist frequency.

- Example (short overview):
 - low-pass filter simulator via bilinear transform;

- implementation via a difference equation;
- frequency response.

(24/10/2022) 8 Filter design: examples.

- Example: design of a first-order low-pass filter via bilinear transform:
 - derivation of V(z) via bilinear transform;
 - basic properties,
 - * reality,
 - * causality (to be imposed),
 - * BIBO–stability;
 - desirable behaviour in the neighbourhood of the Nyquist frequency;
 - implementation via a difference equation;
 - transfer function $\tilde{V}(\omega)$ via "backward interpretation of the simulation theorem".
- Structure of a filter implementing a rational function in the z-domain:
 - effect of zeroes and poles on $\tilde{V}(\omega)$;
 - example: design of a notch filter at $f = f_{Nyquist}/2 = f_{sampling}/4$:
 - * positioning of zeroes and poles, by taking into account reality, causality, BIBO–stability,
 - * final expression for V(z),
 - * frequency response $V(\omega)$,
 - * inversion of z-transform V(z) and practical implementation (left as a homework).

(07/11/2022) 9. Discrete-Fourier-Transform (DFT).

- Discrete–Fourier–Transform (DFT):
 - assumption of the periodicity of $x_a(t)$, with period NT, $N \in \mathbb{N}^+$ and calculation of the coefficients of the Fourier series;
 - assumption of the $\frac{\pi}{T}$ -band-limitedness of $x_a(t)$;
 - (assumption of N being a power of 2);
 - derivation of DFT and relation with the Fourier series coefficients;
 - inversion, periodicity, Parseval's theorem.
- Matrix representation of DFT:
 - notation,
 - * $f_n \equiv f[n],$

- * twiddle factor $W_N \equiv e^{2\pi i/N}$;
- matrix representation;
- dependence $O(N^2)$ of the number of operations required for the DFT on the dimension N of the input string.
- Example: DFT of $\cos(2\pi ft)$ with $f = 2 \cdot \frac{1}{NT}$ in the case N = 8.

(14/11/2022) 10. Fast-Fourier-Transform (FFT).

- A summary of last lecture.
- Radix-2 decimation-in-time Fast-Fourier-Transform (FFT) algorithm:
 - short history: Gauss 1805, Cooley and Tukey 1965;
 - Danielson-Lanczos lemma (*decimation*, i.e. split);
 - *butterfly* diagram (basic computational unit);
 - element ordering via *bit swapping*.
- Dependence $O(N \log N)$ of the number of operations required for the FFT on the dimension N of the input string.
- A short mention on DFT (and FFT) of a nonperiodic function and windowing.
- Examples of FFT in the case N = 8:
 - FFT of $\cos(2\pi ft)$ with $f = 2 \cdot \frac{1}{NT}$;
 - FFT of $\delta[n-3]$;
 - $-\ldots$ proposed as a homework,
 - * generic sequence $\{f_0, f_1, \ldots, f_7\}$, and equivalence with the DFT,
 - * FFT of $\sin(2\pi ft)$ with $f = 2 \cdot \frac{1}{NT}$,
 - $\ast\,$ FFT of a constant,
 - * FFT of $\delta[n]$,
 - * FFT of $\delta[n-4]$.

(21/11/2022) 11. An introduction to information theory: Shannon entropy of an ensamble.

- The basic issue: a definition of information, i.e., how it can be measured:
 - Shannon's approach (1948) with uncertainty;
 - example of a sport match.

- Ensambles (Khinchin's finite schemes; "Experiment") as triples made of...:
 - random variable;
 - alphabet of symbols (or vocabulary of words), each corresponding to a realization of the r.v.;
 - probability distribution of the r.v.
- Shannon entropy of an ensamble:
 - Shannon-Khinchin axioms;
 - proof of uniqueness theorem;
 - examples,
 - * Bernoulli trial,
 - * Battleship (game).

(25/11/2022) 12. An introduction to information theory: Shannon's source coding theorem for symbol codes; compression. (3 hours)

- A summary of last lecture.
- Kullback–Leibler divergence and Gibbs' inequality:
 - relative entropy, aka Kullback–Leibler divergence between two probability distributions;
 - Gibbs' inequality.
- Binary symbol codes and compression issue:
 - definitions related to symbol codes,
 - * (binary) symbol code, codewords, length of codewords,
 - $\ast\,$ extended code,
 - * uniquely decodable symbol code and prefix code,
 - a prefix code is uniquely decodable; the contrary is not true (counterexample $\{1, 101\}$),
 - a prefix code is (generally) easy to decode,
 - * examples;
 - expected length L(C, X) of a symbol code C that encodes an ensamble X;
 - compression issue: given an ensamble X, generation of a symbol code C that...
 - * (compulsory) is uniquely decodable,
 - * (desirable) is easy to decode (so, possibly, a prefix code),

- * (compulsory) minimizes the expected length L(C, X);
- Kraft inequality in the case of unique decodeability,
 - * expression and proof,
 - $\ast\,$ definition of a complete symbol code,
 - * given the size $|A_X|$ of an alphabet, existence of a complete, prefix code that encodes it (provable by construction).
- Shannon's source coding theorem for symbol codes.
- Huffman *lossless* coding algorithm:
 - algorithm;
 - example;
 - properties,
 - * Huffman algorithm generates prefix symbol codes (provable by construction),
 - * Huffman is complete (provable by construction),
 - * Huffman coding is optimal (statement only),
 - * (a "con" indeed:) necessity of knowing p(x) in advance;

- compression improvement via "syllables".

- Lempel–Ziv *lossless* compression algorithm (LZ77):
 - algorithm;
 - example.
- A mention of lossy compression algorithms.

LABORATORY CLASSES

(13/09/2022)~ L1. Introduction to Verilog programming on a FPGA device. Counters and frequency dividers.

- Safety rules.
- A short overview on FPGA devices and on HDL programming languages.
- Introductory problem: design of a 1 Hz counter with 8–LED array display, relying on standard analog and digital circuitry and an 8 Hz clock source.
- Basic hardware circuits:
 - frequency divider;
 - counter.
- Verilog programming language:
 - module architecture;
 - template example: development of an 8-bit, 1 Hz counter with an 8-LED array display, working from 0 to 255;
 - basic modules implementing basic hardware circuits:
 - * frequency divider;
 - * counter.
- Problems:
 - development of an 8-bit, 1 Hz counter with an 8-LED array display, working from 0 to 9;
 - $-\,$ development of an 8–bit, 10 Hz counter with an 8–LED array display, working from 0 to 9.
 - development of a 10 Hz counter, working from 0 to 99, with a 2-digits BCD coding and a 2 x 4-LED array display;
- Additional problems:
 - development of a 10 Hz down counter.

$(14/09/2022)\,$ L2. Multiplexers and demultiplexers. Synchronous counters.

• Solutions to the problems assigned in the previous lab class.

- Hardware and software architectures:
 - combinatorial and sequential circuits;
 - synchronous and asynchronous circuits;
 - example: asynchronous counter and synchronous version by means of a finite-state machine.
- Risetime issue when clocking a flip-flop.
- Basic hardware circuits:
 - multiplexer;
 - demultiplexer.
- Verilog programming language:
 - combinatorial (assign) and sequential (always) Verilog modules;
- Problems:
 - development of a stopwatch from 0 to 99.99 s (1/100 s resolution), with 2-digits BCD coding and a 2 x 4-LED array display;
 - development of a syncronous counter based on a "master clock".

(15/09/2022) L3. Toggle flip-flops. Monostable multivibrators.

- Solutions to the problems assigned in the previous lab class.
- Verilog programming language:
 - basic modules implementing basic hardware circuits:
 - * multiplexer (synchronous and asynchronous version);
 - * synchronous counter with set to a preset value, and reset.
 - basic modules implementing basic hardware circuits:
 - * synchronous toggle flip-flop [*];
 - * synchronous monostable multivibrator [*].

[*] to be developed within the problems.

- Problems:
 - implementation of a synchronous module toggle flip-flop and, through this, of a *toggle pushbutton* to switch on/off an LED;
 - implementation of a synchronous module monostable multivibra-

tor and, through this, of an improved *toggle pushbutton* to switch on/off an LED; observation of the bouncing effect in a pushbutton;

implementation, by means of a monostable multivibrator and an improved *toggle pushbutton*, of a timer to switch on an LED for a given time (programmable through the switches).

(30/09/2022) L4. Implementation of a stopwatch with OLED display.

- Finite-state machines.
- Basic hardware circuits:
 - data latches.
- Verilog programming language:
 - peripheral device drivers (ex.gr.: OLED driver with display of the lap mode).
- Problems:
 - implementation of a synchronous 5-state finite-state machine with two pulse control;
 - final implementation of a stopwatch with 1/100 s resolution, start/stop, lap/reset function, and OLED display.

(12/10/2022) L5. Development of drivers for hardware devices.

- Numerical representation of natural and integer numbers:
 - 2's complement representation of integers;
 - inversion of an integer $(-1) \cdot n = (\sim n) + 1;$
 - sum, difference $a b = a + (-1) \cdot b$, multiplication $a \cdot b = |a| \cdot |b| \cdot sign(a) \cdot sign(b)$;
 - multiplication times 2^k and division by 2^k by means of the *shift* operator;
 - using the 2's complement representation with ADC/DACs.
- Verilog programming language:
 - handling signed numbers.

- Problems:
 - implementation of an RGB driver to control a variable-color LED;
 - implementation of an RGB simplex.

(26/10/2022) L6. Nyquist-Shannon sampling theorem made real. Waveform generation.

- Using the 2's complement representation with ADC/DACs.
- Basic hardware circuits:
 - shift register.
- Verilog programming language:
 - driver of the ADCs placed on the development board;
 - driver of the DACs placed on the development board;
 - shift register.
- Problems:
 - evaluation of the Nyquist frequency and the transfer function gain (voltage-to-number-to-voltage) of a ADC-DAC feedthrough system;
 - implementation of a delayer;
 - implementation of sawtooth waveform generators.

(09/11/2022) L7. Implementation of a harmonic oscillator.

- Theoretical and experimental aspects linked to the development of a harmonic oscillator:
 - general discussion on the difficulty of implementing an oscillator;
 - from the differential equation of a forced oscillator to the z-transform of the simulator response function V(z);
 - derivation of the difference equation;
 - setting of the boundary conditions for the *cosine* operation;
 - dependency of the working frequency $f_0 = \omega_0/(2\pi)$ on the parameter k, provided that $\omega_0 T \ll 1$: $f_0 = f_s/(\pi 2^{\frac{k}{2}+1})$, with $f_s = 1/T$.
- Practical demonstration of FFT windowing.
- Problems:

- implementation and characterization of a harmonic oscillator.

(23/11/2022) L8. Digital simulation of analog filters.

- A short mention to the solutions to the problems assigned in the lab classes L4, L5, L6, L7.
- A summary on Bode diagrams (and on frequency roll-off in filters).
- Theory problem: design of a first-order low-pass filter via bilinear transform:
 - from the Fourier transform of the real system's response function to the z-transform of the simulator's response function V(z);
 - difference equation and block diagram of the simulator;
 - implementation by using a pole placed at $1 2^{-k}$;
 - dependency of the cutoff frequency $f_{3\,\mathrm{dB}} = (2\pi\tau)^{-1}$ on parameter k, provided that $\omega_0 T \ll 1$;
 - frequency behaviour via "backward interpretation of the simulation theorem".
- Problems:
 - implementation of a first-order low-pass filter;
 - assessment of the transfer function (to be displayed via Bode-diagrams).