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LECTURES

(23/09/2024) 1. Introduction to the course. Signals and systems.
Sequences.

• Signal processing:

– analog signal processing;

– digital signal processing (DSP).

• Noise (a very short review):

– Johnson noise;

– shot noise.

• Signals:

– a formal definition of signals (pictures included!);

– continuous signals;

– sequences (discrete–time signals).

• Sequences:

– graphical representation;

– remarkable sequences: impulse–sequence δ[n], step–sequence u[n];

– delayed sequences, relation between δ[n] and u[n];

– representation of a generic sequence by means of delayed impulse–
sequences;

– periodic sequences;

– energy of a sequence.

• Systems:

– a formal definition of systems.

(27/09/2024) 2. LTI systems. Basic properties of LTI systems. Dif-
ference equations.

• Linear, time–invariant (LTI) systems:

– action on a sequence;

– impulse–response (a.k.a. transfer function) h[n], and convolution;

– a comment on the symmetry between input x[n] and impulse–response
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h[n]: their roles can be swapped!

• Properties of an LTI system:

– reality;

– causality;

– (noncausality);

– (marginal stability;)

– bound–input, bound–output (“BIBO”) stability,

∗ definition,

∗ necessary and sufficient condition for BIBO stability;

– examples (h[n] = δ[n], h[n] = u[n], h[n] = anu[n]).

• Difference equations:

– similarity with the continuous case: a difference equation character-
izes an LTI system and it is typically a recursive equation;

– example,

∗ h[n] in the case of y[n] = x[n] + x[n − 1] (causal and noncausal
solution),

∗ Fibonacci sequence (hint at a solution via matrices; left as a
homework).

(30/09/2024) 3. z–transform and its inversion.

• z–transform:

– a discussion on the importance of changing space, in analogy with
continuous systems, to solve difference equations;

– definition and region of convergence (“ROC”);

– remarkable examples,

∗ δ[n],

∗ u[n],

∗ −u[−n− 1].

• Basic properties of z–transform:

– linearity (important: beware of the intersecting ROCs!);

– time–shift (important: beware of new ROC!);

– convolution theorem (important: beware of the intersecting ROCs!).

• Complementary topics: graphical representation of systems:

– linear combinations of systems;

– cascade systems, and invertibility of two systems (proof via z–transform).
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• Summary of residue calculus:

– 1
2πi

∮

Γ um zo
(z − zo)

ndz = δn, −1;

– G(z) has an nth–order pole in zo =⇒
1

2πi

∮

Γ um zo
G(z)dz = 1

(n−1)!
dn−1

dzn−1 [G(z)(z − zo)
n]z=zo .

• Inversion of the z–transform:

– derivation of the inversion expression;

– examples,

∗ X(z) = 1 with ROC = C,

∗ X(z) = z
z−1 with ROC = {z | |z| < 1},

∗ X(z) = z
z−1 with ROC = {z | |z| > 1}.

(07/10/2024) 4. Basic properties of LTI systems as seen in the z–
domain. Inversion of the z–transform: examples. Introduction to
Nyquist–Shannon sampling theorem.

• Basic properties of systems as seen in the z–domain:

– reality,

∗ reality ⇐⇒ X(z) = X(z),

∗ examples (δ[n], anu[n], −anu[−n− 1]),

∗ existence of complex-conjugate zeroes and poles;

– causality,

∗ beware: causal 6= noncausal (k · δ[n] . . . is both!),

∗ causality, namely x[n] = 0 for n < 0 ⇐⇒ ∞ ⊂ ROC
(implication ⇐ via Taylor-Laurent series),

∗ noncausality, namely x[n] = 0 for n > 0 ⇐⇒ 0 ∈ ROC
(implication ⇐ via Taylor-Laurent series),

∗ causuality & noncausality, namely x[n] = 0 for n 6= 0,
i.e. x[n] = k · δ[n] with k ∈ C ⇐⇒
0 ∈ ROC, ∞ ⊂ ROC ⇐⇒ X(z) uniform on C

(the statement corresponds to the Liouville theorem: a bounded
holomorphic function whose ROC coincides with C is uniform),

∗ examples (δ[n], anu[n], −anu[−n− 1]);

– BIBO stability,

∗ BIBO stability ⇐⇒ Γ1 ⊂ ROC,

∗ examples (δ[n], anu[n], −anu[−n− 1]).

• Remarkable examples concerning the inversion of the z–transform:

– Fibonacci sequence;
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– Poisson process and distribution.

• Towards Nyquist–Shannon sampling theorem:

– sampling,

∗ generation of a sequence x[n] starting from a continuous signal
xa(t):
x[n] = xa(nT ),

∗ basic issue: how much information is lost in the sampling process,
or, better, how good a continuous signal can be reconstructed from
a sequence?

– important definitions,

∗ sampling time/period T ,

∗ sampling frequency/rate fs =
1
T ,

∗ sampling frequency ωs =
2π
T ,

∗ Nyquist frequency fNy = 1
2T = fs

2 , ωNy = π
T ,

∗ Nyquist band
(

− π
T ,

π
T

)

.

(11/10/2024) 5. Nyquist–Shannon sampling theorem.

• Nyquist–Shannon precursor relation, reconstruction:

– starting conditions:
1a) analog, continuous signal xa(t) ∈ L2 and
1b) related sampled sequence x[n] being BIBO stable;

– “Nyquist–Shannon precursor relation” between the F–transform X̃(ω)
of xa(t) and the z–transform X(z) of x[n]:
T ·X

(

e−iωT
)

=
∑

∀k X̃(ω + 2π
T k)

(where both terms are periodic);

– useful definitions I. (ex post), II., III. (ex ante),

I. “folding”, X̃folding(ω) ≡
∑

∀k X̃(ω + 2π
T k),

II. π
T –window, W (ω) ≡ [θ(ω + π

T )− θ(ω − π
T )],

III. “reconstruction”, xrec(t) ≡
∑

∀k x[k] sinc
[

(t− kT ) πT
]

;

– reconstruction,

∗ F−1
[

W (ω) · X̃folding(ω)
]

= xrec(t),

∗ remarkably, xrec[n] = xa(nT ) = x[n].

• Nyquist–Shannon sampling theorem:

– final condition (the crucial one!):
2) the analog, continuous signal xa(t) is

π
T –BL (band–limited);
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– Nyquist–Shannon sampling theorem in the frequency domain),
X̃(ω) = W (ω) · X̃folding(ω);

– Nyquist–Shannon sampling theorem in the time domain,
xa(t) = xrec(t).

• Aliasing in the case of a non– π
T –BL signal xa(t):

– Aliasing:
if condition 2) is not met, i.e. xa(t) is not

π
T –BL, then

X̃(ω) 6= W (ω) · X̃folding(ω), and
xrec(t) 6= xa(t), i.e. xrec(t) is not equal to xa(t) but it is something
else (∼ latin alias).

• Practical statement of Nyquist–Shannon sampling theorem: if f0 is the
maximum frequency occurring in a signal, use a sampling frequency fs
such that fs > 2f0.

• Remarkable example: aliasing in the case of sinusoidal and cosinusoidal
signals.

(14/10/2024) 6. Digital simulation of an analog system.

• Theorem concerning the digital simulation of an analog system (“simula-
tion theorem”):

– general discussion;

– proof assuming. . .

∗ 1a) Fourier-transformable input signals and transfer function, i.e.
x(t), G(t) ∈ L2,

∗ 1b) BIBO-stable simulator h[n],

∗ 2) π
T –BL input signals;

– expression of the ideal transfer function h[n] of the simulator;

– reality: G(t) is real ⇒ h[n] is real.

• Implementation issues:

– stability of the ideal transfer function h[n] is to be assessed case by
case;

– non–causality issue for the ideal transfer function h[n] (example:
first-order low-pass filter);

– difficulty – in the general case – of calculating h[n] (example: first-
order low-pass filter);

– a remarkable example: digital differentiator (ideal solution ∝ (1 −
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δ[n]) (−1)n

n ).

• “Backward interpretation of the simulation theorem”:

– statement: any digital system characterized by an impulse sequence
v[n]—and the related z-transform V (z)—is a perfect simulator of an
analog system whose impulse response’s Fourier transform Ṽ (ω) is
given by V (e−iωT ).

• Approximated simulation via “backward interpretation of the simulation
theorem”:

– an approach to overcome the implementation issues: requiring the
simulator’s output y′[n] to approximate the sampled analog output
y[n], y′[n] ∼= y[n], rather than imposing h[n] = g[n].
So, because it is mostly impossible to find H(z), and thus h[n], such
that it exactly simulates a given G̃(ω),
find an implementable V (z), and thus v[n], such that its Fourier–
transform equivalent function V (e−iωT ) suitably approximates G̃(ω);

– (approximation of an ideal system h[n], H(z) through a real one
v[n], V (z) via, ex. gr., minimization of the Tchebycheff error or the
root–mean–square error;)

– a remarkable example: digital differentiator,

∗ solution δ[n]− δ[n− 1],

∗ solution via a non recursive (FIR) filter based on delays up to 2
periods.

(21/10/2024) 7. Simulation via bilinear transform.

• Bilinear transform:

– an issue: how to express ω, or s, in terms of z by relying on z = e−iωT

and exploiting the approximation approach to simulation provided by
the backward interpretation of the simulation theorem;

– bilinear transform statement ω → 2i
T

z−1
z+1 , s →

2
T

z−1
z+1

=⇒ V (z) = H̃
(

ω = 2i
T

z−1
z+1

)

; V (z) = H̃Laplace

(

s = 2
T

z−1
z+1

)

;

– desirable frequency behaviour for T ≪ bandOfInterest−1.

• Simulation via bilinear transform of an LTI system characterized by a
rational transfer function:

– basic properties,

∗ reality
(

h(t) is real ⇐⇒ H̃∗(ω) = H̃(−ω)
)

,

∗ causality (to be imposed),

∗ BIBO–stability, h(t) is BIBO–stable ⇐⇒ stable system with ra-
tional transfer function H̃(s),
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· s → 2
T

z−1
z+1 ⇐⇒ z → sT/2+1

sT/2−1 ,

· =⇒ Re s < 0 ↔ |z| < 1;

– in the case of systems characterized by rational transfer functions
H̃(ω) = N(ω)/D(ω), with degree[N(ω)] < degree[D(ω)],
superiority of bilinear transform with respect to other transforms (for
example the one in which tan(ωT/2) is replaced by sin(ωT )),
due to a desirable behaviour in the neighbourhood of the Nyquist
frequency.

• Example:

– low-pass filter simulator via bilinear transform;

– implementation via a difference equation;

– frequency response.

(21/10/2024) 7. Simulation via bilinear transform.

• Bilinear transform:

– an issue: how to express ω, or s, in terms of z by relying on z = e−iωT

and exploiting the approximation approach to simulation provided by
the backward interpretation of the simulation theorem;

– bilinear transform statement ω → 2i
T

z−1
z+1 , s →

2
T

z−1
z+1

=⇒ V (z) = H̃
(

ω = 2i
T

z−1
z+1

)

; V (z) = H̃Laplace

(

s = 2
T

z−1
z+1

)

;

– desirable frequency behaviour for T ≪ bandOfInterest−1.

• Simulation via bilinear transform of an LTI system characterized by a
rational transfer function:

– basic properties,

∗ reality
(

h(t) is real ⇐⇒ H̃∗(ω) = H̃(−ω)
)

,

∗ causality (to be imposed),

∗ BIBO–stability, h(t) is BIBO–stable ⇐⇒ stable system with ra-
tional transfer function H̃(s),

· s → 2
T

z−1
z+1 ⇐⇒ z → sT/2+1

sT/2−1 ,

· =⇒ Re s < 0 ↔ |z| < 1;

– in the case of systems characterized by rational transfer functions
H̃(ω) = N(ω)/D(ω), with degree[N(ω)] < degree[D(ω)],
superiority of bilinear transform with respect to other transforms (for
example the one in which tan(ωT/2) is replaced by sin(ωT )),
due to a desirable behaviour in the neighbourhood of the Nyquist
frequency.

• Example:

8



– first-order low-pass filter simulator via bilinear transform;

– implementation via a difference equation;

– frequency response.

(28/10/2024) 8 Filter design.

• A recap on designing a first-order low-pass filter via bilinear transform:

– derivation of V (z) via bilinear transform;

– basic properties,

∗ reality,

∗ causality (to be imposed),

∗ BIBO–stability;

– desirable behaviour in the neighbourhood of the Nyquist frequency;

– implementation via a difference equation;

– transfer function Ṽ (ω) via “backward interpretation of the simulation
theorem”.

• Structure of a filter implementing a rational function in the z–domain:

– effect of zeroes and poles on Ṽ (ω);

– example: design of a bandpass filter at f = fNyquist/4 = fsampling/8:

∗ positioning of zeroes and poles, by taking into account reality,
causality, BIBO–stability,

∗ final expression for V (z),

∗ a discussion on the frequency response Ṽ (ω),

∗ inversion of z–transform V (z) and practical implementation;

– example: design of a notch filter at f = fNyquist/2 = fsampling/4:

∗ positioning of zeroes and poles, by taking into account reality,
causality, BIBO–stability,

∗ final expression for V (z),

∗ frequency response Ṽ (ω),

∗ inversion of z–transform V (z) and practical implementation.

(04/11/2024) 9. Discrete–Fourier–Transform (DFT).

• Discrete–Fourier–Transform (DFT):

– assumption of the periodicity of xa(t), with period NT , N ∈ N+ and
calculation of the coefficients of the Fourier series;

– assumption of the π
T –band–limitedness of xa(t);
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– (assumption of N being even);

– derivation of DFT and relation with the Fourier series coefficients;

– inversion, periodicity, Parseval’s theorem.

• Matrix representation of DFT:

– notation,

∗ fn ≡ f [n],

∗ twiddle factor WN ≡ e2πi/N ;

– matrix representation;

– dependence O(N2) of the number of operations required for the DFT
on the dimension N of the input string.

• Example: DFT of cos (2πft) with f = 2 · 1
NT in the case N = 8.

• A short mention on DFT (and FFT) of a nonperiodic function and win-
dowing.

(11/11/2024) 10. Fast–Fourier–Transform (FFT).

• A summary of last lecture.

• Radix–2 decimation–in–time Fast–Fourier–Transform (FFT) algorithm:

– short history: Gauss 1805, Cooley and Tukey 1965;

– Danielson–Lanczos lemma (decimation, i.e. split);

– butterfly diagram (basic computational unit);

– element ordering via bit swapping.

• Dependence O(N logN) of the number of operations required for the FFT
on the dimension N of the input string.

• Examples of FFT in the case N = 8:

– FFT of cos (2πft) with f = 2 · 1
NT ;

– generic sequence {f0, f1, . . . , f7}, and equivalence with the DFT;

– triangular wave {0, 1, 2, 3, 4, 3, 2, 1};

– . . . proposed as a homework,

∗ FFT of sin (2πft) with f = 2 · 1
NT ,

∗ FFT of a constant,

∗ FFT of δ[n],

∗ FFT of δ[n− 3],

∗ FFT of δ[n− 4].
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(18/11/2024) 11. An introduction to information theory: Shannon’s
source coding theorem for symbol codes.

• The basic issue: a definition of information, i.e., how it can be measured:

– Shannon’s approach (1948) with uncertainty;

– example of a sport match.

• Convex functions and Jensen’s inequality:

– convex functions and strictly convex functions;

– Jensen’s inequality,

∗ proof of Jensen’s inequality,

∗ corollary: equality in the case of a strictly convex function.

• Kullback–Leibler divergence and Gibbs’ inequality:

– relative entropy, aka Kullback–Leibler divergence between two prob-
ability distributions;

– Gibbs’ inequality.

• Ensambles (Khinchin’s finite schemes; “Experiment”) as triplets made
of. . . :

– random variable;

– alphabet of symbols (or vocabulary of words), each corresponding to
a realization of the r.v.;

– probability distribution of the r.v.

• Binary symbol codes and compression issue:

– definitions related to symbol codes,

∗ (binary) symbol code, codewords, length of codewords,

∗ uniquely decodable symbol code and prefix code,
a prefix code is uniquely decodable; the contrary is not true
(counterexample {1, 101}),
a prefix code is (generally) easy to decode,

∗ examples;

– expected length L(C,X) of a symbol code C that encodes an ensam-
ble X ;

– compression issue: given an ensambleX , generation of a symbol code
C that. . .

∗ (compulsory) is uniquely decodable,

∗ (desirable) is easy to decode (so, possibly, a prefix code),

∗ (compulsory) minimizes the expected length L(C,X);
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– Kraft inequality in the case of unique decodeability,

∗ expression and proof,

∗ definition of a complete symbol code,

• Shannon’s source coding theorem for symbol codes.

(25/11/2024) 12. An introduction to information theory: Shannon
entropy of an ensamble; compression.

• A summary of last lecture on Shannon’s source coding theorem:

– (uniquely decodable, and possibly prefix) binary symbol codes and
compression;

– expected length ℓ(C,X) of a symbol code C encoding an ensamble
X ;

– compression issue: given an ensamble X , generate a symbol code C
that. . .

∗ is uniquely decodable, possibly a prefix one, and

∗ minimizes the expected length ℓ(C,X);

– statement of Shannon’s source coding theorem (part I):
ℓ(C,X) > H(X).

• Shannon entropy of an ensamble, and a mention of uniqueness theorem
and of noisy channel coding theorem:

– from “information” to “entropy” (a uniform distribution maximizes
H(X). . . );

– a mention of,

∗ Shannon’s source coding theorem, part II, namely a uniquely
decodable code exists such that ℓ(C,X) < H(X) + 1,

∗ Shannon-Khinchin axioms and uniqueness theorem,

∗ noisy channel coding theorem.

• Huffman lossless coding algorithm:

– algorithm;

– example;

– properties,

∗ Huffman algorithm generates prefix symbol codes (provable by
construction),

∗ Huffman is complete (provable by construction),

∗ Huffman coding is optimal (statement only),

∗ (a drawback:) necessity of knowing p(x) in advance;
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– compression improvement via “syllables”, and example with p(a) = 1/4,
p(b) = 3/4.

• Lempel–Ziv lossless compression algorithm (LZ77):

– algorithm;

– example.

• A mention of lossy compression algorithms.
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LABORATORY CLASSES

(04/10/2024) L0. Software setup session. (2 hours)

• Setting up a Linux environment.

• Walkthrough to set up Vivado.

• Compilation and device programming tests.

(08/10/2024) L1. Introduction to Verilog programming on a FPGA
device. Counters and frequency dividers.

• A short overview on FPGA devices and on HDL programming languages.

• Introductory problem: design of a 1 Hz counter with 8–LED array display,
relying on standard analog and digital circuitry and an 8 Hz clock source.

• Basic hardware circuits:

– frequency divider;

– counter.

• Verilog programming language:

– module architecture;

– template example: development of an 8–bit, 1 Hz counter with an
8–LED array display, working from 0 to 255;

– basic modules implementing basic hardware circuits:

∗ frequency divider;

∗ counter.

• Problems:

– development of an 8–bit, 1 Hz counter with an 8–LED array display,
working from 0 to 9;

– development of an 8–bit, 10 Hz counter with an 8–LED array display,
working from 0 to 9.

– development of a 10 Hz counter, working from 0 to 99, with a 2–digits
BCD coding and a 2 x 4–LED array display;

• Additional problems:

– development of a 10 Hz down counter.
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(09/10/2024) L2. Multiplexers and demultiplexers. Synchronous
counters.

• Solutions to the problems assigned in the previous lab class.

• Hardware and software architectures:

– combinatorial (are made of gates, and depend on states) and sequen-
tial circuits (are made of flip-flops [and gates], and depend on clocks
[and states]);

– synchronous and asynchronous circuits;

– example: asynchronous counter and synchronous version by means
of a finite-state machine.

• Basic hardware circuits:

– multiplexer;

– demultiplexer.

• Verilog programming language:

– combinatorial (assign) and sequential (always) Verilog modules;

• Problems:

– development of a stopwatch from 0 to 99.99 s (1/100 s resolution),
with 2–digits BCD coding and a 2 x 4–LED array display;

– development of a syncronous counter based on a “master clock”.

(10/10/2024) L3. Toggle flip-flops. Monostable multivibrators.

• Solutions to the problems assigned in the previous lab class.

• Risetime issue when clocking a flip-flop.

• Verilog programming language:

– basic modules implementing basic hardware circuits:

∗ multiplexer (synchronous and asynchronous version);

∗ synchronous counter with set to a preset value, and reset.

– basic modules implementing basic hardware circuits:

∗ synchronous toggle flip-flop [*];

∗ synchronous monostable multivibrator [*].

[*] to be developed within the problems.

15



• Problems:

– implementation of a synchronous module toggle flip-flop and, through
this, of a push light switch to switch on/off an LED; observation of
the bouncing effect in a pushbutton;

– implementation of a synchronous module monostable multivibra-
tor and, through this, of a timer to switch on an LED for a 1 second;

– implementation, by means of a monostable multivibrator and a toggle
flip-flop, of an improved push light switch to switch on/off an LED;
solution to the bouncing effect in a pushbutton.

(18/10/2024) L4. Finite-state machines.

• Solutions to the problems assigned in the previous lab class.

• Finite-state machines.

• Basic hardware circuits:

– data latches;

– shift registers.

• Verilog programming language:

– peripheral device drivers (ex.gr.: OLED driver with display of the
lap mode).

• Problems:

– implementation of a synchronous 5-state finite-state machine with
two pulse control;

– final implementation of a stopwatch with 1/100 s resolution, start/stop,
lap/reset function, and OLED display.

(23/10/2024) L5. Nyquist–Shannon sampling theorem made real.
Waveform generation.

• Using the 2’s complement representation with ADC/DACs.

• Verilog programming language:

– driver of the ADCs placed on the development board;

– driver of the DACs placed on the development board.

• Problems:
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– evaluation of the Nyquist frequency and the transfer function gain
(voltage-to-number-to-voltage) of a ADC-DAC feedthrough system;

– implementation of a delayer;

– implementation of sawtooth waveform generators.

(30/10/2024) L6. Implementation of a harmonic oscillator.

• Theoretical and experimental aspects linked to the development of a har-
monic oscillator:

– general discussion on the difficulty of implementing an oscillator;

– from the differential equation of a forced oscillator to the z–transform
of the simulator response function V (z);

– derivation of the difference equation;

– setting of the boundary conditions for the cosine operation;

– dependency of the working frequency f0 = ω0/(2π) on the parameter
k, provided that ω0T ≪ 1:
f0 = fs/(π2

k

2
+1), with fs = 1/T .

• Practical demonstration of FFT windowing.

• Problems:

– implementation and characterization of a harmonic oscillator.

(06/11/2024) L7. Digital simulation of analog filters.

• A summary on Bode diagrams (and on frequency roll-off in filters).

• Theory problem: design of a first-order low-pass filter via bilinear trans-
form:

– from the Fourier transform of the real system’s response function to
the z–transform of the simulator’s response function V (z);

– difference equation and block diagram of the simulator;

– implementation by using a pole placed at 1− 2−k;

– dependency of the cutoff frequency f3 dB = (2πτ)−1 on the parameter
k, provided that ω0T ≪ 1;

– frequency behaviour via “backward interpretation of the simulation
theorem”.

• Problems:
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– implementation of a first-order low-pass filter;

– experimental check of the theoretical dependence of the cutoff fre-
quency on the parameter k;

– assessment of the transfer function (to be displayed via Bode–diagrams)
for a specific cutoff frequency.

(13/11/2024) L8. Simulation of a final exam.

• Simulation of a final exam.
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